## Isospin- $\frac{1}{2}, \frac{3}{2}$ $D\pi$ scattering and the $D_0^*$ resonance from lattice QCD The 8th XYZ Particle Symposium

#### Haobo Yan<sup>1</sup> (燕**浩波**) Collaborated with: Prof. Chuan Liu<sup>1</sup> (刘川), Liuming Liu<sup>2</sup> (刘柳明) and Jiajun Wu<sup>3</sup> (吴佳俊)

<sup>1</sup>School of Physics, Peking University

 $^2$ Institute of Modern Physics, Chinese Academy of Sciences

<sup>3</sup>School of Physical Sciences, University of Chinese Academy of Sciences

Jul 28, 2023



## Lattice Quantum Chromodynamics (LQCD)



#### Standard Model of Elementary Particles

- QCD is the QFT that describes the strong interaction between quarks and gluons
- Lattice QCD is QCD formulated on a 4D discrete Euclidean spacetime grid



Lattice QCD adopts path integral formalism

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left( i \left( \gamma^\mu D_\mu \right)_{ij} - m \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a \tag{1}$$

$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, \bar{\psi}] \mathcal{D}[U] e^{-S_F[\psi, \bar{\psi}, U] - S_G[U]} O[\psi, \bar{\psi}, U]$$
<sup>(2)</sup>

### Hadron spectroscopy on the lattice



• Most particles are hadronic resonances – scattering experiments

- Turn off the weak and electromagnetic interactions
- Since the invention of lattice field theory<sup>1</sup>, the calculation of hadron spectroscopy in the non-perturbative regime has been pursued to understand the structure of particles from the first principle

#### A quick review of lattice hadron spectroscopy

- In 1991, Lüscher derived the pioneering formula<sup>2</sup>
- In 1992, Sharpe et al. calculated the first ever  $\pi\pi$  scattering length<sup>3</sup>
- In the next 20 years, people vastly generalized the formula until Briceño wrote down the most general form<sup>4</sup>
- In 2012, JLab calculated the energy-dependent phase shift<sup>5</sup> (non-resonant)



 $\bullet$  In the previous 10 years,  $\rho$  has been found on the lattice undisputedly  $^{\rm 6}$ 

- <sup>4</sup>Briceño, PRD 89 (2014) 074507
- <sup>5</sup>Dudek et al., PRD 86 (2012) 034031

<sup>6</sup>Briceño et al., RMP 90 (2018) 025001

<sup>&</sup>lt;sup>2</sup>Lüscher, NPB 354 (1991) 531

<sup>&</sup>lt;sup>3</sup>Sharpe et al., NPB 383 (1992) 309

#### Exotics on the lattice

For example,  $Z_c(3900)$ :

- Chen et al., PRD 89 (2014) 094506
- HALQCD, 117 (2016) 242001
- Chen et al., 10 (2019) 103103

 $T_{cc}^{+}(3875)$ :

- Chen et al., PRD 833 (2022) 137391
- Padmanath et al., PRL 129 (2022) 032002



X(6900)

• Meng et al., arxiv:230x.xxxxx (only the scattering length)

### Make hadrons more charming

#### • Spectroscopy:

- Liu et al., JHEP 07 (2012) 126: charmonium excited and exotic spectroscopy
- Moir et al., JHEP 05 (2013) 021: D excited spectroscopy
- Cheung et al., JHEP 12 (2016) 089: D<sub>s</sub> excited spectroscopy
- ... ...
- Scattering:
  - Mohler *et al.*, PRD 87 (2013) 034501:  $D\pi I = \frac{1}{2}$  scattering
  - Moir et al., JHEP 10 (2016) 011: Coupled-Channel  $D\pi$ ,  $D\eta$  and  $D_s\bar{K}$  scattering
  - Gayer et al., JHEP 07 (2021) 123:  $D\pi I = \frac{1}{2}$  scattering
  - Cheung et al., JHEP 02 (2021) 100:  $DKI = 0, D\bar{K}I = 0, 1$  scattering

▶ ... ...

We try to conduct a systematic study on the  $D\pi$  scattering

#### The $D_0^*$ resonance

• The  $D_0^*$  was found in 2004 by Belle collboration<sup>7</sup>



- The mass of  $D_0^*(2300)$  is almost identical to  $D_{s0}^*(2317)$ , which is **not** consistent with the traditional quark model predictions<sup>8</sup>. This can be explained by the strong coupling to  $DK^9$
- UChPT:  $D_0^*(2100)$  should be the lightest charmed scalar meson<sup>10</sup>
- The possible two-pole structure mentioned by many people
- Towards the understanding of  $\psi_0(4360) \rightarrow D^* \bar{D}_1 \ (0^{--})^{11}$

- <sup>10</sup>Albaladejo et al., PLB 767 (2017) 465.
- <sup>11</sup> Ji et al., PRL 129 (2022) 102002.

<sup>&</sup>lt;sup>7</sup>Satpathy et al., PRB 159 (2003) 553.

<sup>&</sup>lt;sup>8</sup>Du et al., PRD 98 (2018) 094018.

<sup>&</sup>lt;sup>9</sup>Chen et al., Rep. Prog. Phys. 80 (2017) 076201

## Configurations generated by the CLQCD collaboration (中国格点合作组)

By 24:00, Jul. 27, 2023

| configuration | volume            | a/fm   | $\beta$ | $m_\pi/{ m MeV}$ | $m_{\eta_s}/{ m MeV}$ | $m_{\pi}L$ | $N_{cfgs}$ |
|---------------|-------------------|--------|---------|------------------|-----------------------|------------|------------|
| C24P34        | $24^3 \times 64$  | 0.1053 | 6.20    | 340              | 748                   | 4.38       | 301        |
| C24P29        | $24^3 \times 72$  | 0.1053 | 6.20    | 292              | 658                   | 3.75       | 879        |
| C32P29        | $32^3 \times 64$  | 0.1053 | 6.20    | 292              | 658                   | 5.01       | 984        |
| C32P23        | $32^3 \times 64$  | 0.1053 | 6.20    | 228              | 643                   | 3.91       | 451        |
| C48P23        | $48^3 \times 96$  | 0.1053 | 6.20    | 225              | 643                   | 5.79       | 278        |
| C48P14        | $48^3 \times 96$  | 0.1053 | 6.20    | 135              | 706                   | 3.56       | 203        |
| F32P30        | $32^3 \times 96$  | 0.0775 | 6.41    | 303              | 681                   | 3.81       | 568        |
| F48P30        | $48^3 \times 96$  | 0.0775 | 6.41    | 303              | 679                   | 5.72       | 278        |
| F32P21        | $32^3 \times 64$  | 0.0775 | 6.41    | 210              | 665                   | 2.67       | 459        |
| F48P21        | $48^3 \times 96$  | 0.0775 | 6.41    | 207              | 667                   | 3.91       | 270        |
| H48P32        | $48^3 \times 144$ | 0.0519 | 6.72    | 321              | 709                   | 4.06       | 274        |
| H64P32        | $64^3 \times 128$ | 0.0519 | 6.72    | 321              | 709                   | 5.41       | preparing  |





Haobo Yan (PKU)

 $D\pi$  scattering

Jul 28, 2023

## Configurations generated by the CLQCD collaboration (中国格点合作组)

By 24:00, Jul. 27, 2023

| configuration | volume            | a/fm   | $\beta$ | $m_\pi/{ m MeV}$ | $m_{\eta_s}/{ m MeV}$ | $m_{\pi}L$ | $N_{cfgs}$ |
|---------------|-------------------|--------|---------|------------------|-----------------------|------------|------------|
| C24P34        | $24^3 \times 64$  | 0.1053 | 6.20    | 340              | 748                   | 4.38       | 301        |
| C24P29        | $24^3 \times 72$  | 0.1053 | 6.20    | 292              | 658                   | 3.75       | 879        |
| C32P29        | $32^3 \times 64$  | 0.1053 | 6.20    | 292              | 658                   | 5.01       | 984        |
| C32P23        | $32^3 \times 64$  | 0.1053 | 6.20    | 228              | 643                   | 3.91       | 451        |
| C48P23        | $48^3 \times 96$  | 0.1053 | 6.20    | 225              | 643                   | 5.79       | 278        |
| C48P14        | $48^3 \times 96$  | 0.1053 | 6.20    | 135              | 706                   | 3.56       | 203        |
| F32P30        | $32^3 \times 96$  | 0.0775 | 6.41    | 303              | 681                   | 3.81       | 568        |
| F48P30        | $48^3 \times 96$  | 0.0775 | 6.41    | 303              | 679                   | 5.72       | 278        |
| F32P21        | $32^3 \times 64$  | 0.0775 | 6.41    | 210              | 665                   | 2.67       | 459        |
| F48P21        | $48^3 \times 96$  | 0.0775 | 6.41    | 207              | 667                   | 3.91       | 270        |
| H48P32        | $48^3 \times 144$ | 0.0519 | 6.72    | 321              | 709                   | 4.06       | 274        |
| H64P32        | $64^3 \times 128$ | 0.0519 | 6.72    | 321              | 709                   | 5.41       | preparing  |





Haobo Yan (PKU)

 $D\pi$  scattering

Jul 28, 2023

## $D\pi$ scattering

- Create them from the vacuum! (in a world where  $m_{\pi} \approx 300$  MeV)
- Severe partial wave mixing need many many operators
- Project the operators into specific quantum numbers irrep. and group<sup>12</sup>

$$O_{|p|,\Gamma,r,n} = \sum_{\tilde{R}\in G} T_{r,r}^{\Gamma}(\tilde{R})\tilde{R}D(p_1)\pi(p_2)\tilde{R}^{-1}$$

$$Dic_{4}(A_{1}) \begin{cases} \mathcal{O}_{D_{0}^{*}} &= D_{0}^{*+}(e_{z}), \\ \mathcal{O}_{D^{*}} &= D_{z}^{*+}(e_{z}), \\ \mathcal{O}_{D_{v}^{*}} &= \sum_{i} \overline{d}(\gamma_{x} \vec{\nabla}_{y} - \gamma_{y} \vec{\nabla}_{x})c, \\ \mathcal{O}_{D(0)\pi(1), |\vec{p}_{rel}^{2}| = |\frac{1}{4}|} &= \sum_{\alpha} D(\vec{p}_{\alpha})\pi(\vec{P}_{tot} - \vec{p}_{\alpha}), \alpha \in [0], \\ \mathcal{O}_{D(1)\pi(0), |\vec{p}_{rel}^{2}| = |\frac{1}{4}|} &= \sum_{\alpha} D(\vec{p}_{\alpha})\pi(\vec{P}_{tot} - \vec{p}_{\alpha}), \alpha \in [e_{z}], \\ \mathcal{O}_{D(1)\pi(2), |\vec{p}_{rel}^{2}| = |\frac{5}{4}|} &= \sum_{\alpha} D(\vec{p}_{\alpha})\pi(\vec{P}_{tot} - \vec{p}_{\alpha}), \alpha \in [e_{-x}, e_{x}, e_{-y}, e_{y}], \\ \mathcal{O}_{D(2)\pi(1), |\vec{p}_{rel}^{2}| = |\frac{5}{4}|} &= \sum_{\alpha} D(\vec{p}_{\alpha})\pi(\vec{P}_{tot} - \vec{p}_{\alpha}), \alpha \in [e_{xz}, e_{-x,z}, e_{yz}, e_{-y,z}], \\ \dots \end{cases}$$

• These operators are constructed to map out the scattering phase shift

<sup>&</sup>lt;sup>12</sup>Prelovsek et al., JHEP 2017 (2017) 1.

#### Correlation functions

 $\bullet$  Create  $D\pi$  from a spacetime point, and annihilate them later

$$\langle \mathcal{O}_{D^{(*)}\pi,\Gamma,p}^{[I=\frac{1}{2},I_{z}=\frac{1}{2}]}(t')\mathcal{O}_{D^{(*)}\pi,\Gamma,p}^{[I=\frac{1}{2},I_{z}=\frac{1}{2}]\dagger}(t)\rangle = \sum_{\beta\alpha ji} (6\mathbb{E} + 9\mathbb{F} - 3\mathbb{G})_{[\gamma_{j},\gamma_{5};\gamma_{i},\gamma_{5}]}^{[\beta,P-\beta;-\alpha,-(P-\alpha)]}$$

$$\mathbb{F} = \langle \bar{u} \Box e^{-ip_{\delta} \cdot x} \Omega \Box c(t') \cdot \bar{d} \Box e^{-ip_{\gamma} \cdot x} \Xi \Box u(t') \cdot \bar{c} \Box e^{-ip_{\beta} \cdot x} \Lambda \Box u(t) \cdot \bar{u} \Box e^{-ip_{\alpha} \cdot x} \Gamma \Box d(t) \rangle$$

• The Wick contractions contain the following diagrams



We apply the distillation method  $^{13}$  to make the calculation possible

$$\Box(t) = V(t) V^{\dagger}(t) \longrightarrow \Box_{xy}(t) = \sum_{k=1}^{N} v_x^{(k)}(t) v_y^{(k)\dagger}(t)$$

<sup>13</sup>Peardon et al., PRD 80 (2009) 054506.

#### Correlation functions

 $\bullet$  Create  $D\pi$  from a spacetime point, and annihilate them later

$$\langle \mathcal{O}_{D^{(*)}\pi,\Gamma,p}^{[I=\frac{1}{2},I_{z}=\frac{1}{2}]}(t')\mathcal{O}_{D^{(*)}\pi,\Gamma,p}^{[I=\frac{1}{2},I_{z}=\frac{1}{2}]\dagger}(t)\rangle = \sum_{\beta\alpha ji} (6\mathbb{E} + 9\mathbb{F} - 3\mathbb{G})_{[\gamma_{j},\gamma_{5};\gamma_{i},\gamma_{5}]}^{[\beta,P-\beta;-\alpha,-(P-\alpha)]}$$

$$\mathbb{F} = \langle \bar{u} \Box e^{-ip_{\delta} \cdot x} \Omega \Box c(t') \cdot \bar{d} \Box e^{-ip_{\gamma} \cdot x} \Xi \Box u(t') \cdot \bar{c} \Box e^{-ip_{\beta} \cdot x} \Lambda \Box u(t) \cdot \bar{u} \Box e^{-ip_{\alpha} \cdot x} \Gamma \Box d(t) \rangle$$

• The Wick contractions contain the following diagrams



We apply the distillation method  $^{14}$  to make the calculation possible

$$\Box(t) = V(t) V^{\dagger}(t) \longrightarrow \Box_{xy}(t) = \sum_{k=1}^{N} v_x^{(k)}(t) v_y^{(k)\dagger}(t)$$

<sup>14</sup>Peardon et al., PRD 80 (2009) 054506.

#### Spectrum analysis

• Inserting a complete basis, we know

$$\langle \mathcal{O}_{D\pi,A_{1}^{+},p}^{[J=L=S=0]}(t')\mathcal{O}_{D\pi,A_{1}^{+},p}^{[J=L=S=0]\dagger}(t)\rangle = \sum_{n} |\langle n|\mathcal{O}_{D\pi,A_{1}^{+},p}^{[J=L=S=0]}|0\rangle|^{2} e^{-E_{n}t}$$

- For more than one operator, we use the GEVP method to diagonalize them
- ullet The effective mass  $m_{\rm eff}(t)$  would go asymptotic to a plateau of energy levels



• The high precision enables precise phase shift determination

#### Dispersion check

• The dispersion relation

$$E(\vec{p}) = \sqrt{m_H^2 + \vec{p}^2} (1 + \mathcal{O}(ap))$$
(3)

should be replaced by the discretized version

$$\cosh(aE(\vec{p})) = \cosh(am_H) + \sum_{k=1}^{3} (1 - \cos(ap_k))$$
 (4)





#### The spectra

• The extracted finite volume scattering spectra



- ${\ensuremath{\,\circ\,}}$  The emergence of  $D^*$
- $\bullet$  Strong attraction in S-wave and small  $\delta_1$

• The Lüscher's equation<sup>15</sup>

$$\det\left[\mathrm{e}^{2i\delta} - U(\Gamma)\right] = 0$$

relates the spectrum to the scattering phase shifts in infinite volume

- Underconstrained problem
- Parametrize the phase shifts by the effective range expansion

$$k^{2l+1} \cot \delta_l = \frac{1}{a_l} + \frac{1}{2} r_l k^2 + P_2 k^4 + \mathcal{O}\left(k^6\right),$$

 $\bullet$  Coupling to  $D^{*}\pi$  is to be considered

<sup>&</sup>lt;sup>15</sup>Lüscher, NPB 354 (1991) 531.

• Ignore all l > 0 partial wave



- Using only data from  $\vec{P}=0$
- The Lüscher's equations



• The scattering length and the effective range

$$\begin{cases} a_0 = 2.26(19) \text{fm} \\ r_0 = -0.670(47) \text{fm} \end{cases} \begin{cases} a_1 = -0.52(15) \text{fm} \\ r_1 = -2.0(1.3) \text{fm} \end{cases}$$
(5)

The  $I = \frac{1}{2}$  phase shifts



The predicted spectrum

- With the phase shifts, the poles in the Riemann sheet can be found
- $\bullet\,$  For now,  $D_0^*$  looks like a virtual state on our lattice

#### Conclusions

- There has been a renaissance in hadron spectroscopy
- People are still far from calculating the exact hadron spectrum (well,  $\rho$  is good enough)
- A large number of  $D\pi$  operators are constructed
- $\bullet$  Obtained many finite-volume energy levels in the  $D\pi$  system
- Found the  $D_0^*$  virtual state on our configuration
- To-dos:
  - Analysis for non-inertial frames
  - Interpretation of the pole(s)
  - Chiral extrapolation
  - Continuum extrapolation

# Thank you!

## Appendix

6 Appendix A: Extract the energy spectra

#### Appendix A: Extract the energy spectra

For the correlated analysis, one fits the data in a range  $n_{\min} \leq n_t, n_t' \leq n_{\max}$  by minimizing

$$\chi^{2} = \sum_{n_{t}, n_{t}'=n_{\min}}^{n_{\max}} \left( C(n_{t}) - f(n_{t}) \right) w\left(n_{t}, n_{t}'\right) \left( C\left(n_{t}'\right) - f\left(n_{t}'\right) \right)$$

with regard to the overlap factor  $A_{\alpha 0}$  and the ground state energy  $m_{lpha}$ 

$$f(n_t) = A_{\alpha 0} \cosh\left(\left(n_t - N_T/2\right) m_{\alpha}\right)$$

The estimation of the weight  $w\left(n_{t},n_{t}'
ight)=\mathrm{Cov}^{-1}\left(n_{t},n_{t}'
ight)$  is

$$\operatorname{Cov}_{N}\left(n_{t}, n_{t}^{\prime}\right) = \frac{1}{N-1} \left\langle \left(C(n_{t}) - \left\langle C(n_{t})\right\rangle_{N}\right) \left(C\left(n_{t}^{\prime}\right) - \left\langle C\left(n_{t}^{\prime}\right)\right\rangle_{N}\right) \right\rangle_{N}$$

In this study, all statistical errors are estimated by jackknife resampling