QCD matter under rotation

Mei HUANG (黄梅)

复旦大学,**2023**年**11**月**11**日

QCD matter under extreme conditions

 $\langle \mathrm{T}, \mu_B, \mathbf{B}, \mathbf{E}\cdot\mathbf{B}, \boldsymbol{\omega}, \mu_{\mathrm{I}}, \boldsymbol{L}\rangle$

LHC,RHIC,FAIR,NICA,HIAF Early universe

Neutron star

Neutron star merge→BH

Physical Review Letters (2020). DOI: 10.1103/PhysRevLett.125.012301

Chial dynamics under rotation from NJL model

Yin Jiang, Jinfeng Liao PRL2015

1st order phase transition in two corners!

Minghua Wei, Ying Jiang, M.H. 2011.10987

5 **Zhibin Li, Mei Huang PRD2019 Xinyang Wang, Minghua Wei,**

Scalar meson masses as functions of angular velocity

Minghua Wei, Ying Jiang, M.H. 2011.10987

The effect of rotation on the scalar meson mass is similar to that of chemical potential !

Vector meson masses as functions of angular velocity

$$
\Pi^{\mu\nu,ab}(q) = -i \int d^4 \tilde{r} Tr_{sfc}[i\gamma^{\mu} \tau^a S(0;\tilde{r}) i\gamma^{\nu} \tau^b S(\tilde{r};0)] e^{q\cdot \tilde{r}} \quad \text{and} \quad \Pi^{\mu\nu,ab}(q) = \text{diag} \left(\text{diag} \right)
$$
\n
$$
D^{\mu\nu}_{\mu}(q^2) = D_1(q^2) P_1^{\mu\nu} + D_2(q^2) P_2^{\mu\nu} + D_3(q^2) L^{\mu\nu} + D_4(q^2) u^{\mu} u^{\nu}
$$

 $D_{\rho}^{\mu\nu}(q^2) = D_1(q^2)P_1^{\mu\nu} + D_2(q^2)P_2^{\mu\nu} + D_3(q^2).$ T^+ \rightarrow $D_4(q^+)$

 $P_1^{\mu\nu} = -\epsilon_1^{\mu} \epsilon_1^{\nu}, (S_z = -1 \text{ for } \rho \text{ meson})$

Zeeman splitting effect for different spin component! $-$ Sz=-1 $-$ Sz=+1

Minghua Wei, Ying Jiang, M.H. 2011.10987

Vector meson masses as functions of angular velocity

8 The effect of rotation on spin component of vector meson is similar to that of the magnetic field on charged vector mesons !

Gluons are spin-1 particles, should be more sensitive to rotation than that of quarks! There are no 4D effective theory for gluodynamics, we use dynamical holographic QCD model!

III. Gluodynamics under rotation

AdS/CFT : Original discovery of duality

Supersymmetry and conformality are required for AdS/CFT.

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

Holographic Duality: (d+1)-Gravity/ (d)-QFT

Holographic Duality & RG flow

Coarse graining spins on a lattice: Kadanoff and Wilson

J(x): coupling constant or source for the operator

 $H = \sum_i J_i(x, 2a) \mathcal{O}^i(x)$

 $H = \sum_i J_i(x, a) \mathcal{O}^i(x)$

$$
H = \sum_{i} J_i(x, 4a) \mathcal{O}^i(x)
$$

 $u\frac{\partial}{\partial u}J_i(x,u)=\beta_i(J_j(x,u),u)$

A.Adams, L.D.Carr, T.Shaefer, J.E.Thomas arXiv:1205.5180

Graviton-dilaton-scalar system **Dynamical holographic QCD !**

Dynamical holographic QCD Graviton-dilaton-scalar system

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

Graviton-dilaton coupling Gluonic background:

$$
S_G = \frac{1}{16\pi G_5} \int d^5x \sqrt{g_s} e^{-2\Phi} \left(R + 4\partial_M \Phi \partial^M \Phi - V_G(\Phi) \right)
$$

Action for light hadrons 5D (**inearsigma model**) **Flavor background:**

$$
S_M = -\int d^5x \sqrt{g_s} e^{-\Phi} Tr(|DX|^2 + V_X(X^+X, \Phi) + \frac{1}{4g_5^2}(F_L^2 + F_R^2))
$$

Full

$$
S = S_G + S_M
$$

Dyterplay between gluodynamics and quark dynamics!!! ics:

Interplay between gluodynamics and quark dynamics!!!

Comparing with the Witten-Sakai-Sugimoto model

4-8 open strings give chiral (from D8) and anti-chiral (from anti-D8) fermions in the fundamental representation.

Quark dynamics:

$$
\mathcal{L}_{\rm NJL} = \bar{\psi}(i\gamma_\mu\partial^\mu - m)\psi + G_S[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\vec{\tau}\psi)^2] - G_V[(\bar{\psi}\gamma_\mu\psi)^2 + (\bar{\psi}\gamma_\mu\gamma_5\psi)^2]
$$

Gluon "dynamics": Polyakov-loop effective potential

$$
\frac{\mathcal{U}(\Phi,\bar{\Phi},T)}{T^4} = -\frac{a(T)}{2}\bar{\Phi}\Phi + b(T)\ln[1 - 6\bar{\Phi}\Phi + 4(\bar{\Phi}^3 + \Phi^3) - 3(\bar{\Phi}\Phi)^2]
$$

\n
$$
\Omega_{PNJL} = \mathcal{U}(\Phi,\bar{\Phi},T) - 2N_c \sum_{i=u,d} \int_0^{\Lambda} \frac{d^3p}{(2\pi)^3} [E_i] + G_S(\sigma_u + \sigma_d)^2 - G_V(\rho_u + \rho_d)^2
$$

\n
$$
-2T \sum_{i=u,d} \int \frac{d^3p}{(2\pi)^3} [\ln(1 + 3\Phi e^{-\beta(E_i - \tilde{\mu}_i)} + 3\bar{\Phi}e^{-2\beta(E_i - \tilde{\mu}_i)} + e^{-3\beta(E_i - \tilde{\mu}_i)})]
$$

\n
$$
-2T \sum_{i=u,d} \int \frac{d^3p}{(2\pi)^3} [\ln(1 + 3\bar{\Phi}e^{-\beta(E_i + \tilde{\mu}_i)} + 3\Phi e^{-2\beta(E_i + \tilde{\mu}_i)} + e^{-3\beta(E_i + \tilde{\mu}_i)})]
$$

Quarkyonic phase in quenched DhQCD

Xun Chen, Danning Li, Defu Hou, M.H, arXiv:1908.02000

Sasaki, Friman, Redlich, hep-ph/0611147

4D effective theory mainly investigate chiral phase transition, HQCD can handle gluodynamics

Einstein-Maxwell-Dilaton system

$$
S = \frac{1}{16\pi G_5} \int d^5x \sqrt{-g} \left[R - \frac{h(\phi)}{4}F^2 - \frac{1}{2}\partial_\mu\phi\partial^\mu\phi - V(\phi)\right].
$$

$$
ds^{2} = \frac{e^{2A_{e}(z)}}{z^{2}} [-F(z)dt^{2} + \frac{1}{F(z)}dz^{2} + d\vec{x}^{2}]
$$

$$
A_e(z) = -\frac{3}{4}\ln\left(az^2+1\right) + \frac{1}{2}\ln\left(bz^3+1\right) - \frac{3}{4}\ln\left(dz^4+1\right)\\h(z) = e^{-cz^2-A_e(z)}.\qquad \qquad \text{D. Dudal and S. Mahaptra, "Thermal entropy of a quark-4}\\\text{deconfinement from a dimensional holographic OCD model"}
$$

D. Dudal and S. Mahapatra, "Thermal entropy of a quark-antiquark pair above and below deconfinement from a dynamical holographic QCD model," Phys. Rev. D 96 (2017) no.12, 126010 [arXiv:1708.06995 [hep-th]].

$$
t \to \frac{1}{\sqrt{1-\omega^2}}(t+\omega L\phi), \phi \to \frac{1}{\sqrt{1-\omega^2}}(\phi+\frac{\omega}{L}t),
$$

 ω is a dimensionless angular velocity parameter ranging from 0 to 1

Fit parameters from lattice QCD results for pure gluon system and 2-flavor system

Enhancement of thermodynamical properties under rotation

Deconfinement phase transition under rotation

Defu Hou, M.H. arXiv: 2010.14478

Critical temperature of deconfinement phase transition decreases with rotation in holography method! Confirmed by other studies! e.g.

Yanqing Zhao's talk

Figure 9: The $\hat{T} - \omega$ phase diagram of the pure gluon system. The critical temperature of the first-order phase transition decreases as ω is increased.

Phase diagram of holographic thermal dense 23

Yan-Qing Zhao¹*, Song He^{2,3†} Defu Hou^{1‡} Li Li^{4,5,6§} and Zhibin Li⁷¹

Influence of relativistic rotation on the confinement/deconfinement transition in gluodynamics

V.V. Braguta, ^{1, 2, 3, *} A. Yu. Kotov, ^{4, †} D.D. Kuznedelev, ^{3, ‡} and A.A. Roenko^{1, §}

e-Print: 2102.05084 Critical temperature of deconfinement OBC $8 \times 20 \times 25^2$ 皇室 $10 \times 30 \times 31^2$ 医甲甲亚 1.00 $8 \times 24 \times 25^2$ $10 \times 30 \times 41^2$ phase transition $8\times24\times33^2$ $10\times30\times51^2$ $8\times24\times41^2$ $12 \times 36 \times 37^2$ $8 \times 30 \times 25^2$ increases with 0.98 rotation in lattice! 0.96 Confirmed by other $N_s/N_t \simeq 4$ 0.94 lattice studies! $N_s/N_t \simeq 5$ 0.92 1000 7000

 Ω

2000

3000

4000

 Ω_I^2 (MeV²)

5000

6000

8000

Phys.Rev.D 103 (2021) 9, 094515,

Ji-Chong Yang,Xu-Guang Huang e-Print: 2307.05755 [hep-lat]

FIG. 4. The Polyakov loop and chiral condensate as functions of Ω_I .

XXXII International (online) Workshop on High Energy Physics "Hot problems of Strong Interactions", Nov.9-13, 2020

Opposite results on the effect of rotation on the critical temperature of deconfinement phase transition in hQCD and lattice has attracted much attention in recent years!

Deconfinement phase transition under rotation in PNJL model

Fei Sun, Kun Xu, and Mei Huang, PHYSICA 096007 (2023), e-Print: 2307.14402 [hep-p

$$
\mathcal{L}_{\text{PNJL}} = \bar{\psi} \left[i \gamma^{\mu} D_{\mu} - m + \gamma^0 \mu \right. \n+ (\gamma^0)^{-1} ((\vec{\omega} \times \vec{x}) \cdot (-i\vec{\theta}) + \vec{\omega} \cdot \vec{S}_{4 \times 4})] \psi \n+ G(\bar{\psi}\psi)^2 - \mathcal{U}(\Phi[A], \overline{\Phi}[A], T),
$$

The effects of imaginary and real rotations on QCD matters

Gaoqing Cao

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519088, China (Dated: October 6, 2023)

e-Print: 2310.03310 [nucl-th]

FIG. 3. The temperature imaginary rotations $(T - \Omega_I)$ phase diagram. The solid and dashed lines correspond to first- and second-order transitions, respectively, and the blue bullet is a critical end point.

FIG. 5. The temperature-real rotations $(T - \Omega)$ phase with the transition of first order.

FIG. 14. The pseudocritical temperatures T_c as functions of real rotation Ω for $m_{u/d}$, m_s and |L| in the PNJL model.

- **1, need to understand polarized gluodynamics under rotation;**
- **2, need to check carefully the calculation in hQCD and lattice QCD.**

Dilepton rate and ellipticity under roation

Minghua Wei, Aminul Chowdhury, Mei Huang, arXiv: 2111.05192

Xinyang Wang, Igor Shovkovy,Lang Yu, Mei Huang, arXiv: 2006.16254

Global polarization induced by rotation, polarization difference of charged particles induced by magnetic field. SP and AMM plays important role.

1**, Selfconsistentunderstandingondiamagnetism,IMC andmesonspectraundermagneticfieldstillneedfurther studies**.

2**,Bothrotationandmagneticfieldinducespolarization, globalpolarizationinducedbyrotation,polarization differenceofchargedparticlesinducedbymagneticfield**. **SPandAMMplaysimportantrole**.