Measurements of vector meson spin alignment in heavy-ion collisions

Fudan University

Workshop on "QCD under rotation", Shanghai, 2023/11/11-13

Diyu Shen

Introduction of global polarization in heavy-ion collisions

- Measurements of spin alignments
 and LHC
- Summary and outlook

Measurements of spin alignment of vector mesons at RHIC

Global polarization in HIC

Liang, Wang Phys. Rev. Lett. 94, 102301(2005); Phys. Lett. B 629, 20 (2005)

Large OAM is deposited in the interaction region

- Quarks with spin 1/2 will be polarized due to spin-orbit coupling.
- This effect may not be washed out during interactions and hadronization.

The initial momentum gradient will result in a rotating QGP in non-central heavy-ion collisions.

Global polarization of Λ

 The global polarization of Lambda serves fluid (9±1)x10²¹ s⁻¹

The global polarization of Lambda serves the evidence of the rotating QGP, the most vortical

Spin alignment of vector mesons

Z.T. Liang et al., Physics Letters B 629 (2005) 20-26

S
 ρ
 ο
 F
 ρ
 (r

$$\rho^{V} = \begin{pmatrix} \rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1} \end{pmatrix}$$

- Spin state of spin 1 particle along OAM.
 - $\rho_{00} \text{ can be determined by the momentum distribution} of decay products. <math display="block">\rho^{V} = \begin{pmatrix} \text{the momentum distribution} \\ 0 & \frac{1-P^{q}P^{\bar{q}}}{3+P^{q}P^{\bar{q}}} & 0 \\ 0 & 0 & \frac{(1-P^{q})(1-P^{\bar{q}})}{3+P^{q}P^{\bar{q}}} \end{pmatrix}$ From the measurements of Lambda polarization, the ρ_{00} was expected to be $\rho_{00} 1/3 \sim -10^{-4}$ (recombination).

Experimental measurements of ϕ , K*

STAR Col. Phys. Rev. C 77, 061902® (2008)

- Early data in Au+Au 200 GeV have large uncertainties.

• ρ_{00} is found to be less than 1/3 (~3 σ) at low p_T in Pb-Pb 2.76 TeV, unexpectedly large.

Experimental measurements of ϕ , K*

- Early data in Au+Au 200 GeV have large uncertainties.

• ρ_{00} is found to be less than 1/3 (~3 σ) at low p_T in Pb-Pb 2.76 TeV, unexpectedly large.

New measurements of ϕ , K* at RHIC

•New measurements extend the study to lower energies with high statistics, @200 GeV, a factor of ~50 more event statistics analyzed.

•We see that the signal for the ϕ meson occurs mainly within ~1.0-2.4 GeV/c; at larger p_T the results can be regarded as being consistent with 1/3 within ~2 σ or less.

* 1st order EP: ZDC or BBC * 2nd order EP: TPC

STAR Col. Nature 614, 244 (2023)

New measurements of ϕ , K* at RHIC

ρ₀₀

•K^{*0} is a combination of K^{*0} and anti-K^{*0}

•Different from the ϕ meson data, the K^{*0} data is consistent with 1/3, within statistics and systematical uncertainties.

STAR Col. Nature 614, 244 (2023)

Centrality dependence of ϕ , K* at RHIC

At high energies (≥ 62.4 GeV) for ϕ , and (≥ 39 GeV) for K*⁰, ρ_{00} in central collisions tends to $\leq 1/3$. This might be caused by transverse local spin alignment and a contribution from the helicity polarization of quarks.

Beam energy dependence of ϕ , K*

STAR Col. Nature 614, 244 (2023)

1) ϕ -meson is significantly above 1/3 for sqrt{s} \leq 62 GeV

2)K* is almost consistent with 1/3

3) Averaged over 62 GeV and below:

•0.3541 \pm 0.0017 (stat.) \pm 0.0018 (sys.) for ϕ •0.3356 ± 0.0034 (stat.) ± 0.0043 (sys.) for K*

Expectations of ρ_{00} from theory

$\int \mathrm{d}^3 oldsymbol{p}_b \exp\left(-rac{oldsymbol{p}_b^2}{a_\phi^2} ight)$	$\left. \begin{array}{c} p_{b,x}^2 \\ \overline{E_{p_1}E_{p_2}} \end{array} \right \cdot$	
c ε: Vorticity tensor[1]	$(42)^{-5}$ < 1/3 (Negative ~ 10^{-4})	
c _E : Electric field ^[2]	> 1/3 (Positive ~ 10 ⁻⁵)	1
Fragmentation[3]	> or, < $1/3$ (~ 10^{-5}) (x , p)	
Local spin alignment and helicity ^[4]	< 1/3	C_{I}
Turbulent color field ^[5]	< 1/3	
c _φ : Vector meson strong force field ^[6]	> 1/3	

 $b_{00} \approx \frac{1}{3} + c_{\omega} + c_{\varepsilon} + c_{\rm EM} + c_{\phi} + c_{\rm LV} + c_h + c_{\rm TC} + c_{\rm shear}$

]. Liang et., al., Phys. Lett. B 629, (2005); ang et., al., Phys. Rev. C 97, 034917 (2018); ia et., al., Phys. Lett. B 817, 136325 (2021); Beccattini et., al., Phys. ev. C 88, 034905 (2013)]. Sheng et., al., Phys. Rev. D 101, 096005 (2020); Yang et., al., hys. Rev. C 97, 034917 (2018) 3]. Liang et., al., Phys. Lett. B 629, (2005) $c_{\rm EM}$]. Xia et., al., Phys. Lett. B 817, 136325 (2021); ao, Phys. Rev. D 104, 076016 (2021) *t., al., Phys Lett B 629, (2005);* Yang et., al., Phys Rev C 97, 034917 (2018); 5]. Muller et., al., Phys. Rev. D 105, L011901 (2022) $C = 10^{105} C_{\phi}$ [2]. Sheng et., al., Phys. Rev. D 101, 096005 (2020);]. Sheng et., al., Phys. Rev. D 101, 096005 (2020); 2 97, 034917 (2018) hys. Rev. D 102, 056013 (2020); Phys Rev. Lett. 131 3 629, (2005) 12304 (2023); arXiv:2206.05868 (2022) ., Phys Lett B 817, 136325 (2021); Guo, Phys Rev D 104, 076016 (2021)] A. Kumar, B. Muller and D.-L Yang, PRD 108 016020 (2023) 6005 (2020); Sheng et., al., Phys Rev D 102, 056013 (2020)

$\int \mathrm{d}^3 oldsymbol{p}_b \exp\left(-rac{oldsymbol{p}_b^2}{a_\phi^2} ight)$	$\int \frac{p_{b,x}^2}{E_{p_1}E_{p_2}}.$	
c ε: Vorticity tensor[1]	$(42)^{\circ}$ < 1/3 (Negative ~ 10 ⁻⁴)	
c E: Electric field[2]	> 1/3 (Positive ~ 10 ⁻⁵)	
Fragmentation ^[3]	> or, < 1/3 $(\sim 10^{-5})(r, m)$	Poo
Local spin alignment and helicity ^[4]	< 1/3	
Turbulent color field ^[5]	< 1/3	E ² (m ²)
c _φ : Vector meson strong force field ^[6]	> 1/3	

ie local coffection or fluctuation of ϕ fields is the minant mechanism for the observed ϕ -meson ρ_{00}

Light front framework

Fu et.al., arXiv: 2308.0793

By introducing light front spinor, the polarization of vector mesons with ρ_{00} > 1/3 can be naturally derived.

The small ΛP_H vs. large $\phi \rho_{00}$

Z. T. Liang, Chirality 2023

For
$$q_{1}^{\uparrow} + \overline{q}_{2}^{\uparrow} \rightarrow V$$

 $p_{00}^{V} = \frac{1 - \langle P_{q_{1}} P_{\overline{q}_{2}} \rangle}{3 + \langle P_{q_{1}} P_{\overline{q}_{2}} \rangle} \stackrel{?}{=} \frac{1 - P_{q}^{2}}{3 + P_{q}^{2}}$
For $q_{1}^{\uparrow} + q_{2}^{\uparrow} + q_{3}^{\uparrow} \rightarrow H$
 $P_{H} = \left\langle \left\langle c_{1} P_{q_{1}} + c_{2} P_{q_{2}} + c_{3} P_{q_{3}} \right\rangle_{H} \right\rangle_{S} = \left\langle c_{1} \langle P_{q_{1}} \rangle_{H} + c_{2} \langle P_{q_{2}} \rangle_{H} + c_{3} \langle P_{q_{3}} \rangle_{H} \right\rangle_{S}$
 $= c_{1} \left\langle \langle P_{q_{1}} \rangle_{H} \right\rangle_{S} + c_{2} \left\langle \langle P_{q_{2}} \rangle_{H} \right\rangle_{S} + c_{3} \left\langle \langle P_{q_{3}} \rangle_{H} \right\rangle_{S} = c_{1} \langle P_{q_{1}} \rangle + c_{2} \langle P_{q_{1}} \rangle + c_{3} \langle P_{q_{1}} \rangle$

The STAR data show that

By studying P_H , we study the average of quark polarization P_a ; by studying ρ_{00}^V , we study the correlation between P_q and $P_{\overline{q}}$.

t:
$$\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle$$

One has to take fluctuations into account, so that: $\langle P_q P_{\overline{q}} \rangle \neq \langle P_q \rangle \langle P_{\overline{q}} \rangle$

Measurements of J/ψ spin alignment

ALICE, Phys. Rev. Lett. 131, 042303 (2023)

ALI-PUB-521052

 λ_{θ} = 0.2 corresponding to ρ_{00} = 0.25, how do we understand J/psi?

Can we see strong force filed fluctuation in $c\bar{c}$?

On going analysis: BESII ϕ mesons

STAR, QM 2023

- Significantly increased statistics.
- Differential measurements of ho_{00} .

On going analysis: BESII ϕ mesons

STAR, QM 2023

Similar centrality dependence for ρ_{00} with respect to 1st and 2nd order EP.

On going analysis: BESII ϕ mesons

STAR, QM 2023

- Larger field fluctuations in the direction perpendicular to ϕ motion.

Theory curve: Sheng et al., arXiv:2308.14038 [nucl-th]

Rapidity dependence is qualitatively consistent with theoretical calculations from ϕ field.

On going analysis: *J/y* mesons

STAR, QM 2023

J/psi ρ_{00} w.t. 2nd event plane seems smaller than 1/3 at mid-rapidity in isobaric collisions.

STAR, Spin 2023

On going analysis: K^{*0} , $K^{*\pm}$ mesons

STAR, QM 2022

•K^{*0} is larger than 1/3 at smaller N_{part}, it is comparable to Au+Au at a similar N_{part} •Charged K^{*} is larger than 1/3, it is larger than neutral K^{*} with 3.9 σ

STAR, QM 2023

Statistical error projection for isobar at 200 GeV.

• Reconstruction of ρ^0 is difficult, but we have been putting our efforts on it.

Statistical error projection for AuAu 200 GeV, run 2023 & 2025 combined.

On going analysis: ρ^0 mesons

STAR, QM 2023 <u>×10⁻³</u> £ ⊳12 Statistical error pro • $v_2^{\rho} = 0$ v^ρ₂ = 0.05 for isobar at 200 ($v_{2}^{\bar{p}} = 0.10$ $+ v_2^{\rho} = 0.15$ 0.1 0.40 **STAR Preliminary** 0 0.35 Ρ -0.1 0.30 Projection $\rho_{00}(\psi_2)$ for ρ^0 meson. Isobars(RuRu & ZrZr) 200 Ge' 0.2 1.5 2 2.5 3 0.5 p_ (Gev/c)

Reconstruction of ρ⁰ is more difficult, but we have been putting our efforts on it.
It is critical to the search of the CME.

Shen et al., PLB 839 137777 (2023)

On going analysis: D^{*+} mesons

- •Spin polarization opens a new avenue to investigate heavy-ion collisions
- •Global hyperon polarization is observed with the order of a few percent. It represents a measure of the average value of the global quark polarization in the system
- •Global vector meson spin alignment is observed with a surprisingly large parttern for ϕ meson. It represents a local fluctuation/correlation between quark and anti-quark polarization
- •Measurements as a function of collision energies, different hadron species are on-going, rich physics to be explored

Thank you!

