

Ripples of the QCD critical point

Wei-jie Fu

Dalian University of Technology

"QCD under rotation", Fudan University Nov 10-13th, 2023

Based on :

WF, Xiaofeng Luo, Jan M. Pawlowski, Fabian Rennecke, Shi Yin, *Ripples of the QCD Critical Point*, arXiv: 2308.15508; Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, *Soft modes in hot QCD matter*, arXiv:2310.19853.

QCD phase structure

4 Early Universe The Phases of QCD **Central Au + Au Collisions Central Au + Au Collisions 300** LHC Experiments $\langle P_{\rm T}({\rm GeV}/c) \langle 1.6 \rangle$ (GeV/c) < 1.6) 3 RHIC Experiments HADES (0 - 10%) 10% **250** $HADES (0 -$
($|y| < 0.4$) Ratio $\mathsf{C}_4\mathsf{C}_2$ 2 **200** Plasma Temperature (MeV) Temperature (MeV) (0.4) Crossover 1 **150 100** Ω Inhomogeneous phase ? Critical End Point **Quarkyonic 50 Color** -1 $(-0.5 < y < 0)$ Hadron Gas Regime ? Superconductor $(0.4 < p_{\rm T}$ (GeV/c) $<$ 2.0) Vacuum Nuclear Matter Structure Nuclear Matter **0** 2 5 10 20 50 100 200 **0 200 400 600 800 1,000 1,200 1,400 1,600** Collision Energy $\sqrt{s_{NN}}$ (GeV) Baryon Chemical Potential μ_B (MeV)

QCD phase diagram Fluctuations measured by STAR

STAR (0 - 5%)

(Iyl $<$ 0.5, $\,$ 0.4 $<$ $p_{\rm T}$ (GeV/c) $<$ 2.0 $\,$

GCE **CE**

net-proton

proton

net-proton

proton

J. Adam *et al.* (STAR), *PRL* 126 (2021), 092301; M. Abdallah *et al.* (STAR), *PRC* 104 (2021), 024902; M. Abdallah *et al.* (STAR), *PRL* 128 (2022) 20, 202303

HRG

 \Box

UrQMD

- The non-monotonicity of the kurtosis is observed with 3.1σ significance. *σ*
- Is there a "peak" structure in the regime of low colliding energy?

QCD phase structure

Early Universe The Phases of QCD **300** LHC Experiments RHIC Experiments **250 200** Plasma Temperature (MeV) Temperature (MeV) Crossover **150 100** Inhomogeneous phase ? Critical End Point **Quarkyonic 50 Color** Hadron Gas Regime ? Superconductor Vacuum Nuclear Matter Structure Nuclear Matter **0 0 200 400 600 800 1,000 1,200 1,400 1,600** Baryon Chemical Potential μ_B (MeV)

QCD phase diagram

Fluctuations measured by STAR

J. Adam *et al.* (STAR), *PRL* 126 (2021), 092301; M. Abdallah *et al.* (STAR), *PRC* 104 (2021), 024902; M. Abdallah *et al.* (STAR), *PRL* 128 (2022) 20, 202303

- The non-monotonicity of the kurtosis is observed with 3.1σ significance. *σ*
- Is there a "peak" structure in the regime of low colliding energy?

Hyper-order fluctuations

STAR: B. Aboona *et al.*, *PRL* 130 (2023), 082301, arXiv: 2207.09837

fRG: WF, Luo, Pawlowski, Rennecke, Wen, Yin, *PRD* 104 (2021) 094047

Outline

- Introduction
- Brief review about fRG
- Baryon number fluctuations at high density ☀
- Ripples of the QCD critical point
- Critical region and its size in QCD
- Summary

Functional renormalization group

Functional integral with an IR regulator

$$
Z_k[J] = \int (\mathcal{D}\hat{\Phi}) \exp\{-S[\hat{\Phi}] - \Delta S_k[\hat{\Phi}] + J^a \hat{\Phi}_a\}
$$

$$
W_k[J] = \ln Z_k[J]
$$

regulator:

$$
\Delta S_k[\varphi] = \frac{1}{2} \int \frac{d^4q}{(2\pi)^4} \varphi(-q) R_k(q) \varphi(q)
$$

flow of the Schwinger function:

$$
\partial_t W_k[J] = -\frac{1}{2} \text{STr} \left[\left(\partial_t R_k \right) G_k \right] - \frac{1}{2} \Phi_a \partial_t R_k^{ab} \Phi_b
$$

Legendre transformation:

$$
\Gamma_k[\Phi] = - W_k[J] + J^a \Phi_a - \Delta S_k[\Phi]
$$

flow of the effective action:

$$
\partial_t \Gamma_k[\Phi] = \frac{1}{2} \text{STr} \left[\left(\partial_t R_k \right) G_k \right] = \frac{1}{2}
$$
\nWetterich equation

C. Wetterich, *PLB*, 301 (1993) 90

First-principles QCD within fRG

QCD flow equation:

Glue sector:

Matter sector:

Gluon dressing functions

Lattice $N_f = 2$: Sternbeck *et al.*, *PoS* (2012) LATTICE2012, 243 Lattice $N_f = 2 + 1$: Boucaud *et al.*, *PRD* 98 (2018) 114515 fRG $N_f = 2$: Cyrol, Mitter, Pawlowski,Strodthoff, *PRD* 97 (2018) 054006

fRG: WF, Pawlowski, Rennecke, *PRD* 101 (2020) 054032

Renormalized light quark condensate

improved truncations for the sector of *s* quark and the full mesonic potential of $N_f = 2 + 1$.

fRG: WF, Pawlowski, Rennecke, *PRD* 101 (2020) 054032 Lattice: Borsanyi *et al.* (WB), *JHEP* 09 (2010) 073 fRG: WF, Pawlowski, Rennecke, Wen, Yin,

(2023) in preparation

 $\Delta_{q_i} \simeq -\, m_{q_i}^0\, T\, \sum \,$ *ⁿ*∈ℤ [∫] d^3q $(2\pi)^3$ ${\rm tr}\, G_{q_i\bar{q}_i}(q)$, $\Delta_{q_i,R}^{}=$ 1 $\frac{1}{R} \left[\Delta_{q_i}(T, \mu_q) - \Delta_{q_i}(0,0) \right] .$ quark condensate:

Other fermionic observables

fRG: WF, Pawlowski, Rennecke, *PRD* 101 (2020) 054032

(2023) in preparation

$\Delta_{l,s}(T,\mu_q) =$ $\Delta_l(T,\mu_q)$ – (m_l^0 $\overline{m_s^0}$) 2 $\Delta_s(T,\mu_q)$ $\Delta_l(0,0)$ – (m_l^0 $\overline{m_s^0}$ 2 $\Delta_{s}(0,0)$

Reduced condensate: Effective four-quark coupling:

Phase boundary and curvature

CEP:

$$
\begin{aligned} (T_{\tiny{\text{CEP}}}, \mu_{B_{\tiny{\text{CEP}}}})_{\tiny{N_f=2+1}} &= (107 \, \text{MeV}, 635 \, \text{MeV}) \,, \\ (T_{\tiny{\text{CEP}}}, \mu_{B_{\tiny{\text{CEP}}}})_{\tiny{N_f=2}} &= (117 \, \text{MeV}, 630 \, \text{MeV}) \,, \end{aligned}
$$

FRG curvature of the phase boundary:

$$
\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \lambda \left(\frac{\mu_B}{T_c}\right)^4 + \cdots,
$$

$$
\kappa_{N_f=2+1} = 0.0142(2)
$$

$$
\kappa_{N_f=2} = 0.0176(1)
$$

Lattice result:

 $\kappa = 0.0149 \pm 0.0021$

Lattice: Bellwied *et al.* (WB), *PLB* 751 (2015) 559

 $\kappa = 0.015 \pm 0.004$

Lattice: Bazavov *et al.* (HotQCD), *PLB* 795 (2019) 15

10

CEP from different theoretical calculations

By courtesy of Xiaofeng Luo

CEP from first-principles functional QCD

Estimates of the location of CEP from first-principles functional QCD:

fRG:

 $(T, \mu_B)_{\text{CEP}} = (107, 635) \text{MeV}$

fRG: WF, Pawlowski, Rennecke, *PRD* 101 (2020), 054032

DSE:

$$
\nabla (T, \mu_B)_{\text{CEP}} = (109, 610) \text{MeV}
$$

DSE (fRG): Gao, Pawlowski, *PLB* 820 (2021) 136584

$$
\blacklozenge (T, \mu_B)_{\text{CEP}} = (112, 636) \text{MeV}
$$

DSE: Gunkel, Fischer, *PRD* 104 (2021) 5, 054022

- No CEP observed in $\mu_B/T \lesssim 2 \sim 3$ from lattice QCD. Karsch, *PoS* CORFU2018 (2019)163
- Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: 600 MeV $\lesssim \mu_{B_{\text{CEP}}} \lesssim$ 650 MeV.

CEP from first-principles functional QCD

Passing through strict benchmark tests in comparison to lattice QCD at vanishing and small μ_B .

Estimates of the location of CEP from first-principles functional QCD:

fRG:

 $(T, \mu_B)_{\text{CFP}} = (107, 635) \text{MeV}$

fRG: WF, Pawlowski, Rennecke, *PRD* 101 (2020), 054032

DSE:

 ∇ $(T, \mu_B)_{\text{CEP}} = (109, 610) \text{MeV}$

DSE (fRG): Gao, Pawlowski, *PLB* 820 (2021) 136584

$$
\blacklozenge (T, \mu_B)_{\text{CEP}} = (112, 636) \text{MeV}
$$

DSE: Gunkel, Fischer, *PRD* 104 (2021) 5, 054022

- No CEP observed in $\mu_B/T \lesssim 2 \sim 3$ from lattice QCD. Karsch, *PoS* CORFU2018 (2019)163
- Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: 600 MeV $\lesssim \mu_{B_{\text{CEP}}} \lesssim$ 650 MeV.

CEP from first-principles functional QCD

Passing through strict benchmark tests in comparison to lattice QCD at vanishing and small μ_B .

Regime of quantitative reliability of functional QCD with $\mu_B/T \lesssim 4$.

Estimates of the location of CEP from first-principles functional QCD:

fRG:

 $(T, \mu_B)_{\text{CFP}} = (107, 635) \text{MeV}$

fRG: WF, Pawlowski, Rennecke, *PRD* 101 (2020), 054032

DSE:

 ∇ $(T, \mu_B)_{\text{CEP}} = (109, 610) \text{MeV}$

DSE (fRG): Gao, Pawlowski, *PLB* 820 (2021) 136584

$$
\blacklozenge (T, \mu_B)_{\text{CEP}} = (112, 636) \text{MeV}
$$

DSE: Gunkel, Fischer, *PRD* 104 (2021) 5, 054022

- No CEP observed in $\mu_B/T \lesssim 2 \sim 3$ from lattice QCD. Karsch, *PoS* CORFU2018 (2019)163
- Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: 600 MeV $\lesssim \mu_{B_{\text{CEP}}} \lesssim$ 650 MeV.

Natural emergence of LEFTs from QCD

Exchange couplings • Propagator gapping

- •Composite (mesonic) degrees of freedom take over active dynamics from partonic ones when the RG scale is lowered down $k \lesssim 600 \sim 800$ MeV.
- •LEFTs emerge naturally from fundamental theory in the regime of low energy, in agreement with the viewpoint of RG.

QCD-assisted LEFT

Baryon number fluctuations

baryon number fluctuations

$$
\chi_n^B = \frac{\partial^n}{\partial (\mu_B/T)^n} \frac{p}{T^4} \qquad R_{nm}^B = \frac{\chi_n^B}{\chi_m^B}
$$

relation to the cumulants

$$
\frac{M}{VT^3} = \chi_1^B, \frac{\sigma^2}{VT^3} = \chi_2^B, S = \frac{\chi_3^B}{\chi_2^B \sigma}, \kappa = \frac{\chi_4^B}{\chi_2^B \sigma^2},
$$

HotQCD: A. Bazavov *et al.*, arXiv: *PRD* 95 (2017), 054504; *PRD* 101 (2020), 074502

• In comparison to lattice results and our former results, the improved results of baryon number fluctuations at vanishing chemical potential in the QCD-assisted LEFT are convergent and consistent.

Grand canonical fluctuations at the freeze-out

STAR collider (0-40%)

STAR fixed-target (0-40%)

STAR: Adam *et al.* (STAR), *PRL* 126 (2021) 092301; Abdallah *et al.* (STAR), *PRL* 128 (2022) 202303; Aboona *et al.* (STAR), *PRL* 130 (2023) 082301

fRG: WF, Luo, Pawlowski, Rennecke, Yin, arXiv: 2308.15508

- Results in fRG are obtained in the QCD-assisted LEFT with a CEP at $(T_{\text{CEP}}, \mu_{B_{\text{CEP}}}) = (98, 643)$ MeV.
- Peak structure is found in 3 GeV $\lesssim \sqrt{s_\mathrm{NN}} \lesssim 7.7 \ \mathrm{GeV}.$
- Agreement between the theory and experiment is worsening with $\overline{s_\mathrm{NN}} \lesssim 11.5 \; \mathrm{GeV}.$
- Effects of global baryon number conservation in the regime of low collision energy should be taken into account.

Caveat:

Fluctuations of baryon number in theory are compared with those of proton number in experiments.

Canonical corrections with SAM

- Experimental data R_{32} is used to constrain the parameter α in the range $\sqrt{s_\text{NN}}\lesssim 11.5$ GeV.
- We choose the simplest linear dependence

SAM:

• We adopt the subensemble acceptance method (SAM) to take into account the effects of global baryon number conservation:

$$
\alpha = \frac{V_1}{V}
$$

 V_1 : the subensemble volume measured in the acceptance window, V: the volume of the whole system.

• fluctuations with canonical corrections are related to grand canonical fluctuations as follows:

$$
\bar{R}_{21}^B = \beta R_{21}^B, \qquad \bar{R}_{32}^B = (1 - 2\alpha) R_{32}^B,
$$

$$
\bar{R}_{42}^B = (1 - 3\alpha\beta) R_{42}^B - 3\alpha\beta (R_{32}^B)^2
$$

SAM: Vovchenko, Savchuk, Poberezhnyuk, Gorenstein, Koch , *PLB* 811 (2020) 135868

17

Canonical fluctuations at the freeze-out

STAR: Adam *et al.* (STAR), *PRL* 126 (2021) 092301; Abdallah *et al.* (STAR), *PRL* 128 (2022) 202303; Aboona *et al.* (STAR), *PRL* 130 (2023) 082301

fRG: WF, Luo, Pawlowski, Rennecke, Yin, arXiv: 2308.15508

- Peak structure is found in 3 GeV $\lesssim \sqrt{s_\mathrm{NN}} \lesssim 7.7 \ \mathrm{GeV}.$
- Position of peak in R_{42} is $\mu_{B_{peak}} =$ 536, 541 and 486 MeV for the three freeze-out curves, significantly ${\bf smaller}$ than $\mu_{B_{\rm CEP}}=643$ MeV.

Dependence on the location of the CEP

Ripples of the QCD critical point

Postion of peak: Height of peak:

fRG: WF, Luo, Pawlowski, Rennecke, Yin, arXiv: 2308.15508

- Note that the ripples of CEP are far away from the critical region characterized by the universal scaling properties, e.g., the critical exponents.
- But, the information of CEP, such as its location and properties, etc., is still encoded in the ripples.

Magnetic equation of state

The magnetic equation of state (EoS) is obtained via the chiral condensate:

$$
\Delta_q = m_q \frac{\partial \Omega(T; m_q(T))}{\partial m_q} = m_q \frac{T}{V} \int_x \langle \bar{q}(x) q(x) \rangle
$$

The chiral properties of the magnetic EoS are encoded in the magnetic susceptibility:

$$
\chi_M = -\frac{\partial \bar{\Delta}_l}{\partial m_l}
$$
, with $\bar{\Delta}_l = \frac{\Delta_l}{m_l}$

• In the critical region, the magnetic EoS can be expressed as a universal scaling function $f_G(z)$ through

$$
\bar{\Delta}_l = m_l^{1/\delta} f_G(z)
$$

with

$$
z = t m_l^{-1/\beta \delta}
$$
, and $t = (T - T_c)/T_c$

 ζ is the scaling variable and t is the reduced temperature.

• The pseudo-critical temperature T_{pc} , which is defined through the peak location of χ_M , is readily obtained from the scaling function as

$$
T_{\text{pc}}(m_{\pi}) \approx T_c + c m_{\pi}^p
$$
, with $p = 2/(\beta \delta)$

Critical exponent in fRG for 3d-O(4):

$$
\beta = 0.405
$$
, $\delta = 4.784$, $\theta_H = 0.272$,

obtained from the fixed-point equation for the Wilson-Fisher fixed point, which leads us $p_{\text{fRG}} = 1.03$

Critical exponent in mean field:

$$
\beta_{\rm MF}=1/2\,,\quad \delta_{\rm MF}=3\,,
$$

thus, one has $p_{MF} = 4/3$

Braun, WF, Pawlowski, Rennecke, Rosenblüh, Yin, *PRD* 102 (2020), 056010.

Magnetic equation of state

$$
T_{\rm pc}(m_{\pi}) \approx T_c + c \, m_{\pi}^p
$$

Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, arXiv:2310.19853.

Lattice (HotQCD):

$$
T_c^{\text{lattice}} = 132^{+3}_{-6} \text{MeV},
$$

Ding *et al.*, *PRL* 123 (2019) 062002. fRG: $T_c^{\text{fRG}} \approx 142 \text{ MeV}, \qquad p_{\text{fRG}} = 1.024$

Braun, WF, Pawlowski, Rennecke, Rosenblüh, Yin, *PRD* 102 (2020) 056010.

DSE:

Gao, Pawlowski, *PRD* 105 (2022) 9, 094020, arXiv: 2112.01395. $T_c^{\text{DSE}} \approx 141 \text{ MeV}, \qquad p_{\text{DSE}} = 0.9606$

- The almost linear dependence of the pseudocritical temperature on the pion mass has nothing to do with the criticality.
- So what is the size of the critical region in QCD?

Critical region in QCD

Scaling in the temperature:

Scaling in the external field: Critical exponent δ :

- QCD at physical light quark mass is far away from the critical region.
- The scaling behavior is observed for the first time in the calculations of first-principles QCD.

Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, arXiv:2310.19853.

- ★ A prominent peak structure is found in baryon number fluctuations in the collision energy range of 3 GeV $\lesssim \sqrt{s_{\rm NN}} \lesssim 7.7$ GeV.
- ★ Information of the peak, i.e., the ripples of CEP can be used to reconstruct the location and properties of CEP.
- ★ The size of the critical region in QCD is determined for the first time.

- ★ A prominent peak structure is found in baryon number fluctuations in the collision energy range of 3 GeV $\lesssim \sqrt{s_{\rm NN}} \lesssim 7.7$ GeV.
- ★ Information of the peak, i.e., the ripples of CEP can be used to reconstruct the location and properties of CEP.
- \star The size of the critical region in QCD is determined for the first time.

Thank you very much for your attentions!

QCD with dynamical hadronization

Introducing a RG scale dependent composite field:

$$
\hat{\phi}_k(\hat{\varphi}), \text{ with } \hat{\varphi} = (\hat{A}, \hat{c}, \hat{\bar{c}}, \hat{q}, \hat{\bar{q}}), \qquad \qquad \langle \partial_t
$$

Wetterich equation is modified as

$$
\partial_t \Gamma_k[\Phi] = \frac{1}{2} \text{STr} \big(G_k[\Phi] \partial_t R_k \big) + \text{Tr} \bigg(G_{\phi \Phi_a}[\Phi] \frac{\delta \langle \partial_t \hat{\phi}_k \rangle}{\delta \Phi_a} R_{\phi} \bigg)
$$

$$
-\int \langle \partial_t \hat{\phi}_{k,i} \rangle \left(\frac{\delta \Gamma_k[\Phi]}{\delta \phi_i} + c_\sigma \delta_{i\sigma} \right),
$$

Flow equation: WF, Pawlowski, Rennecke, *PRD* 101 (2020) 054032

$$
\langle \partial_t \hat{\phi}_k \rangle = \dot{A}_k \, \bar{q} \tau q + \dot{B}_k \, \phi + \dot{C}_k \, \hat{e}_\sigma,
$$

Gies, Wetterich , *PRD* 65 (2002) 065001; 69 (2004) 025001 Pawlowski, *AP* 322 (2007) 2831 Flörchinger, Wetterich, *PLB* 680 (2009) 371

Flow of four-quark couplings:

$$
\partial_t \bar{\lambda}_q - 2\left(1+\eta_q\right)\bar{\lambda}_q - \bar{h}\,\dot{\bar{A}} = \overline{\mathbf{Flow}}_{(\bar{q} \tau q)(\bar{q} \tau q)}^{(4)},
$$

choosing

$$
\bar{\lambda_q} \equiv 0 \,, \qquad \forall k \,,
$$

Hadronization function:

$$
\dot{\bar{\mathcal{A}}} = -\frac{1}{\bar{h}} \, \overline{\mathbf{Flow}}^{(4)}_{(\bar{q}\tau q)(\bar{q}\tau q)},
$$

four-quark interaction encoded in Yukawa coupling:

Determination of the freeze-out curve

three freeze-out curves

1. freeze-out: Andronic *et al.*

Andronic, Braun-Munzinger, Redlich, *Nature* 561 (2018) 7723, 321

2. freeze-out: STAR Fit I

L. Adamczyk *et al.* (STAR), *PRC* 96 (2017), 044904 **all data points**

3. freeze-out: STAR Fit II

 ${\bf n}$ eglecting first two at low μ_B and the last one

$$
\mu_{B_{CF}} = \frac{a}{1 + 0.288\sqrt{s_{NN}}},
$$

$$
T_{CF} = \frac{T_{CF}^{(0)}}{1 + \exp\left(2.60 - \ln(\sqrt{s_{NN}})/0.45\right)}
$$

- freeze-out curve should not rise with μ_B
- convexity of the freeze-out curve 27

Dependence of the location of CEP

