Role of quark anomalous magnetic moment in chiral phase transition under magnetic field

Mamiya Kawaguchi

Postdoctoral Researcher at University of Chinese Academy of Sciences

collaborator: Mei Huang (UCAS)

2023/11/12

Outline

1. Introduction

• QCD phase diagram

2. QCD at temperatures

- Physical observables
- First principle vs effective model (my previous studies)

3. QCD under magnetic field

- Magnetic effect on phase transition
- Our work

4. Summary and outlook

*Note that NO rotation effect in my talk. Magnetic fields mimic rotation effect.

1. Introduction

• QCD phase diagram

First-principle calculation is powerful tool.

Lattice QCD simulation

Directly solve underlying QCD theory.

Physical quantities have been observed:

- Quark condensate
- Susceptibilities

Meson susceptibility Topological susceptibility

First-principle calculation is powerful tool.

Lattice QCD simulation

First-principle calculation is powerful tool.

Lattice QCD simulation

Physical quantities have been observed:

- Quark condensate
- Susceptibilities

Thermal phase transition is observed: crossover.

Part of phase diagram has been clarified.

First-principle calculation is powerful tool.

But...

Phase transition in dense QCD...

First-principle calculation is powerful tool.

But...

Cannot be applied to μ_B -axis.

This is due to sign problem.

Phase diagram is still unclear...

Effective model analyses are also useful.

Strong magnetic is generated in extreme conditions.

High temperature

High dense matter

Strong magnetic is generated in extreme conditions.

High temperature

<image>

Phase diagram becomes a rich structure.

Much attention has been drawn to exploring QCD phase diagram.

2. QCD at temperatures

- Physical observables
- First principle vs effective model (my previous studies)

Physical observables at finite temperatures (T) • Quark condensate

• Meson susceptibility

• Topological susceptibility

Physical observables at finite temperatures (T)

• Quark condensate

Order parameter for spontaneous chiral symmetry breaking: it is responsible to the origin of hadron masses.

- Meson susceptibility
 - Meson property (mass) can be read from susceptibility.

- Topological susceptibility
 - It is related to QCD topological structure.

Lattice QCD observations

Quark condensateMeson susceptibility- JHEP06(2009)088- PRL 113 (2014) 8, 082001

Topological susceptibility

- C. Bonati et al, JHEP 11, 170 (2018), 1807.07954.
- S. Borsanyi et al., Nature 539, no. 7627, 69 (2016).
- P. Petreczky et al, Phys. Lett. B 762, 498-505 (2016)

6

Lattice QCD

observations

Effective model is useful for understanding data.

Nambu-Jona-Lasinio (NJL) model

$$\mathcal{L} = \bar{q}(i\gamma_{\mu}\partial^{\mu} - \mathbf{m})q + \mathcal{L}_{4f} + \mathcal{L}_{KMT}$$
$$\int \mathcal{L}_{4f} = \frac{g_s}{2} \sum_{a=0}^{8} [(\bar{q}\lambda^a q)^2 + (\bar{q}i\gamma_5\lambda^a q)^2]$$
$$\mathcal{L}_{KMT} = g_D[\det_{i,j}\bar{q}_i(1+\gamma_5)q_j + \text{h.c.}]$$

• NJL is based on symmetry structure of quarks.

Nambu-Jona-Lasinio (NJL) model

Is based on chiral symmetry.

$$\mathcal{L} = \bar{q}(i\gamma_{\mu}\partial^{\mu} - \mathbf{m})q + \mathcal{L}_{4f} + \mathcal{L}_{\text{KMT}}$$
$$\mathcal{L}_{4f} = \frac{g_s}{2} \sum_{a=0}^{8} [(\bar{q}\lambda^a q)^2 + (\bar{q}i\gamma_5\lambda^a q)^2]$$
$$\mathcal{L}_{\text{KMT}} = g_D[\det_{i,j} \bar{q}_i(1+\gamma_5)q_j + \text{h.c.}]$$

*Model parameters are fixed to provide physical meson masses.

We evaluate...

- Quark condensate
- Meson susceptibility
- Topological susceptibility.

Chuan-Xin Cui, Jin-Yang Li, Shinya Matsuzaki, M.K., Akio Tomiya, *PRD* 105 (2022) 11, 114031

Nambu-Jona-Lasinio (NJL) model

NJL results are in good agreement with lattice observations.

We evaluate...

- Quark condensate
- Meson susceptibility
- Topological susceptibility.

Chuan-Xin Cui, Jin-Yang Li, Shinya Matsuzaki, M.K., Akio Tomiya, *PRD* 105 (2022) 11, 114031

QCD and chiral symmetry

Effective model analysis based on symmetry

QCD and chiral symmetry

3. QCD under magnetic field

- Magnetic effect on phase transition
- Our work

How do magnetic fields affect the chiral symmetry?

Effective model analysis

• NJL model...

QCD phase diagram at eB

Strong magnetic is generated in extreme conditions.

High temperature

High dense matter

O guark

A gluon

Phase diagram with magnetic field

Quark condensate in eB

Magnetic effect on (subtracted) quark condensate at finite temperatures

Normalized quark condensate: $\Sigma_{u,d}(B,T) = \frac{2m_{ud}}{M_{\pi}^2 F^2} \left[\bar{\psi} \psi_{u,d}(B,T) - \bar{\psi} \psi_{u,d}(0,0) \right] + 1$ Subtracted quark condensate: $\Delta \Sigma_{u,d}(B,T) = \Sigma_{u,d}(B,T) - \Sigma_{u,d}(0,T)$

Quark condensate in eB

Normalized quark condensate: $\Sigma_{u,d}(B,T) = \frac{2m_{ud}}{M_{\pi}^2 F^2} \left[\bar{\psi} \psi_{u,d}(B,T) - \bar{\psi} \psi_{u,d}(0,0) \right] + 1$ Subtracted quark condensate: $\Delta \Sigma_{u,d}(B,T) = \Sigma_{u,d}(B,T) - \Sigma_{u,d}(0,T)$

T-eB phase diagram

We can describe T-eB phase diagram.

Phase diagram (Lattice observation)

Magnetic field reduces T_{pc} .

T-eB phase diagram

effective model analysis?

Phase diagram (Lattice observation)

Magnetic field reduces T_{pc} .

NJL v.s. lattice QCD

Phase diagram (conventional NJL)

Magnetic field enhances T_{pc} .

Phase diagram (Lattice observation)

Magnetic field reduces T_{pc} .

NJL v.s. lattice QCD

Phase diagram (conventional NJL)

12

Phase diagram (Lattice observation)

NJL in eB

We should add new contributions, effects or interactions to NJL model.

Missing ingredients would be a new aspect of thermomagnetic QCD.

Proposals:

- Pion fluctuation PRL, 110(3):031601, 2013 ۲
- Chirality imbalance PRD, 88:054009, 2013 •
- Intrinsic eB-dependence on coupling constant • PRD, 91(5):054006, 2015.

•

Anomalous Magnetic Moment of quarks

We add Anomalous Magnetic Moment (AMM) of quarks to NJL model.

$$\mathcal{L}_{\rm int}^{\rm (AMM)} = \frac{1}{2} \kappa_f q_f \bar{\psi} F_{\mu\nu} \sigma^{\mu\nu} \psi \qquad (F_{\mu\nu} \sim B)$$

Anomalous Magnetic Moment of quarks

We add Anomalous Magnetic Moment (AMM) of quarks to NJL model.

$${\cal L}_{
m int}^{
m (AMM)} = rac{1}{2} \kappa_f q_f ar{\psi} F_{\mu
u} \sigma^{\mu
u} \psi$$
 ($F_{\mu
u} \sim B$)

Quark-AMM κ_f is dynamically generated through spontaneous chiral symmetry breaking PRL, 106:072001,2011. (based on Bethe-Salpeter approach)

Dynamical generation of quark AMM κ_f has also been studied in the gauged NJL model, PRD, 103:116008, 2021.

(AMM is evaluated at quark one-loop level for the photon-quark-antiquark vertex function.)

Anomalous Magnetic Moment of quarks

We add Anomalous Magnetic Moment (AMM) of quarks to NJL model.

$${\cal L}_{
m int}^{
m (AMM)} = rac{1}{2} \kappa_f q_f ar{\psi} F_{\mu
u} \sigma^{\mu
u} \psi$$
 ($F_{\mu
u} \sim B$)

Quark-AMM κ_f is dynamically generated through spontaneous chiral symmetry breaking PRL, 106:072001,2011. (based on Bethe-Salpeter approach)

Dynamical generation of quark AMM κ_f has also been studied in the gauged NJL model, PRD, 103:116008, 2021.

(AMM is evaluated at quark one-loop level for the photon-quark-antiquark vertex function.)

Quark-AMM κ_f becomes vanishingly small after the chiral restoration.

Quark-AMM would be significant in thermomagnetic phase transition.

14

Influence of quark-AMM

Influence of quark-AMM on...

- Meson mass under eB
- Magnetic susceptibility
 - NJL with AMM
 (Phys. Rev. D, 103(7):076015, 2021.
 Phys. Rev. D 106, 016005, 2022.)

Meson mass and mag. sus.have been observed in Lattice simulationPoS, LATTICE2019:250, 2020

- JHEP, 07:183, 2020
- Generation mechanism of strong eB in magnetars
 - Spontaneous magnetization based on NJL with AMM (PTEP, 2015(10):103D01, 2015)

Magnetar

Influence of quark-AMM

Influence of quark-AMM on...

- Meson mass under eB
- Magnetic susceptibility
 - NJL with AMM (Phys. Rev. D, 103(7):076015, 2021. Phys. Rev. D 106, 016005, 2022.)

Meson mass and mag. sus. have been observed in Lattice simulation • PoS, LATTICE2019:250, 2020 • JHEP, 07:183, 2020

- Generation mechanism of strong eB in magnetars
 - Spontaneous magnetization based on NJL with AMM (PTEP, 2015(10):103D01, 2015)

However, exact form of AMM is still unknown...

Understanding quark-AMM is important in extreme conditions of QCD.

3. QCD under magnetic field

- Magnetic effect on phase transition
- Our work

Our study

Motivation: How much does quark-AMM contribute to chiral restoration in magnetized QCD?

• Quark-AMM interaction

But, κ_f is unknown...

Our study

Motivation: Reveal the effective form of quark-AMM linked with chiral symmetry breaking.

• Quark-AMM interaction

$$\mathcal{L}_{\rm int}^{\rm (AMM)} = \frac{1}{2} \kappa_f q_f \bar{\psi} F_{\mu\nu} \sigma^{\mu\nu} \psi$$

At T = 0 AMM is evaluated from proton and neutron magnetic moment by using constituent quark model. $\kappa_u = 0.29016 \,\text{GeV}^{-1}$ PRD, 90(10):105030, 2014 $\kappa_d = 0.35986 \,\text{GeV}^{-1}$ Quark AMM would take $\kappa_{u,d} \sim O(0.1 \,\text{GeV}^{-1})$.

Benchmark values

Our study

Motivation: Reveal the effective form of quark-AMM linked with chiral symmetry breaking.

• Quark-AMM interaction

$$\mathcal{L}_{int}^{(AMM)} = \frac{1}{2} \kappa_f q_f \bar{\psi} F_{\mu\nu} \sigma^{\mu\nu} \psi$$
What would happen
if $\kappa_{u,d}$ take constant?

At T = 0 AMM is evaluated from proton and neutron magnetic moment by using constituent quark model. $\kappa_u = 0.29016 \,\text{GeV}^{-1}$ PRD, 90(10):105030, 2014 $\kappa_d = 0.35986 \,\text{GeV}^{-1}$ Quark AMM would take $\kappa_{u,d} \sim O(0.1 \,\text{GeV}^{-1})$.

Benchmark values

Constant AMM and induced-phase transition

Constant AMM induces first order phase transition.

- M.K. and M. Huang, arXiv:2205.08169 [hep-ph].
- PRD, 90(10):105030, 2014

...

17

• NJL is based on smooth regularization.

Constant AMM and induced-phase transition

Constant AMM induces first order phase transition.

- M.K. and M. Huang, arXiv:2205.08169 [hep-ph].
- PRD, 90(10):105030, 2014

• Quark AMM takes $\kappa_{u,d} \sim O(0.1 \text{GeV}^{-1})$.

17

• NJL is based on smooth regularization.

AMM depending on chiral condensate

Suppose that $\kappa_{u,d}$ depends on chiral (quark) condensate σ :

 $\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$ (AMM is generally expanded as a series of σ .)

 $O(\sigma)$ and $O(\sigma^2)$ have been proposed in the NJL analyses, but the higher order terms have not been fully taken into account in the phase transition. Phys. Rev. D, 103(7):076015, 2021. Phys. Rev. D 106, 016005, 2022.

AMM depending on chiral condensate

Suppose that $\kappa_{u,d}$ depends on chiral (quark) condensate σ :

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$$
 (AMM is g

AMM is generally expanded as a series of σ .)

18

• O(1) term induces unexpected-first order phase transition.

• Higher order terms like $O(\sigma^3)$ would become negligible compared with $O(\sigma)$ and $O(\sigma^2)$.

Discard constant term and higher order terms.

AMM depending on chiral condensate

Suppose that $\kappa_{u,d}$ depends on chiral (quark) condensate σ :

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots \quad \text{(AMM is generally expanded as a series of } \sigma.\text{)}$$

18

• *O*(1) term induces unexpected-first order phase transition.

• Higher order terms like $O(\sigma^3)$ would become negligible compared with $O(\sigma)$ and $O(\sigma^2)$.

Discard constant term and higher order terms.

Evaluate the contribution of $O(\sigma)$ and $O(\sigma^2)$, respectively.

AMM $O(\sigma)$ contribution

Contribution of $O(\sigma)$ on chiral condensate

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$$

eB-dependence of chiral condensate including $\kappa_{u,d} = v\sigma$ (v is parameter)

arXiv:2205.08169 [hep-ph]

$$\kappa_{u,d} = v\sigma \sim O(0.1 \text{GeV}^{-1})$$
 at $T = 0$.

19

AMM $O(\sigma)$ contribution

Contribution of $O(\sigma)$ on chiral condensate

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$$

eB-dependence of chiral condensate including $\kappa_{u,d} = v\sigma$ (v is parameter)

arXiv:2205.08169 [hep-ph]

 $\kappa_{u,d} \sim \sigma$ also induces jump in chiral condensate.

 $\kappa_{u,d} = v\sigma \sim O(0.1 \text{GeV}^{-1})$ at T = 0.

However...

Jump is not observed in lattice QCD simulation.

$$\kappa_{u,d} \sim \sigma$$
 is discarded.

AMM $O(\sigma^2)$ contribution

Contribution of $O(\sigma^2)$ on chiral condensate

$$\kappa_{u,d} = \bar{v}\sigma^2 \sim O(0.1 \,\text{GeV}^{-1})$$
 at $T = 0$.

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$$

eB-dependence of chiral condensate including $\kappa_{u,d} = \bar{v}\sigma^2$ (\bar{v} is parameter)

AMM $O(\sigma^2)$ contribution

Contribution of $O(\sigma^2)$ on chiral condensate

$$\kappa_{u,d} = \bar{\nu}\sigma^2 \sim O(0.1 \text{GeV}^{-1})$$
 at $T = 0$.

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$$

eB-dependence of chiral condensate including $\kappa_{u,d} = \bar{v}\sigma^2$ (\bar{v} is parameter) Accidental jumps do not show up. $\kappa_{u,d} \sim \sigma^2$ suppresses chiral symmetry breaking.

 $\kappa_{u,d} \sim \sigma^2$ acts as suppressor for chiral symmetry breaking.

20

Comparison with lattice data

Contribution of $O(\sigma^2)$ on chiral condensate

$$\kappa_{u,d}(\sigma) = O(1) + O(\sigma) + O(\sigma^2) + O(\sigma^3) + \cdots$$

Subtracted quark condensate including $\kappa_{u,d} = \bar{v}\sigma^2$ (\bar{v} is parameter)

By tuning \bar{v} ...

reproduce the lattice results.

NJL model can quantitatively

 \bar{v} would have intrinsic T-dependence: $\bar{v}(T)$.

lattice results: PRD, 104(1):014505, 2021. PRD, 105(3):034514, 2022.

IMC in NJL, but...

Tuned quark-AMM inhibits magnetic catalysis.

IMC in NJL, but...

Tuned quark-AMM inhibits magnetic catalysis.

To perfectly agree with lattice observation...

Extra mechanism would be needed. (like magnetic dependent coupling constant)

AMM effect in finite chemical potential

Let's move onto finite quark chemical potential.

 μ -dependence on chiral condensate

*Similar behavior is observed in PRD 106, no.11, 116023 (2022).

AMM effect in T- μ phase diagram

Phase diagram in T- μ plane

Quark AMM significantly affects phase diagram at finite μ -region.

Summary

Motivation: How much does quark-AMM $\kappa_{u,d}$ contribute to phase transition under eB?

Restricted the form of $\kappa_{u,d}$ from the observed chiral phase transition.

✓ Quark-AMM reduces chiral symmetry breaking.

NJL results can not perfectly agree with lattice data at finite-T.

✓ Quark AMM provides the inverse magnetic catalysis for μ_c .

AMM potentially affects magnetized QCD phase diagram.

Outlook

Quark-AMM linked with chiral symmetry

Phase structure is still unclear...

There would exist undiscovered ingredients.

- Improve AMM.
- Provide new mechanism.

Hadron/QCD properties in extreme conditions

Thank you.