

QCD under Rotation

2023.11.12@Fudan

outline

- Phase transitions in effective models
- Phase transitions in Lattice QCD
- Perturbative study
- Modified Polyakov loop potential
- Polyakov Nambu—Jona-Lasinio model
- Summary and perspective

HIC and fast rotation

Phase transitions in effective models

Y. Jiang & J. Liao (PRL2016)

- 1. Chiral symmetry restores with rotation
- 2. A critical end point

H. Chen et.al. (PRD2016)

Chiral symmetry restores with magnetic field at large rotation

-- de Haas-van Alphen effect

Phase transitions in Lattice QCD

V. V. Braguta et.al. (PRD2021)

$$\begin{split} S_{G} &= \frac{1}{2g^{2}} \int d^{4}x \left[(1 - r^{2}\Omega^{2})F_{xy}^{a}F_{xy}^{a} + (1 - y^{2}\Omega^{2})F_{xz}^{a}F_{xz}^{a} \right. \\ &+ (1 - x^{2}\Omega^{2})F_{yz}^{a}F_{yz}^{a} + F_{x\tau}^{a}F_{x\tau}^{a} + F_{y\tau}^{a}F_{y\tau}^{a} \\ &+ F_{z\tau}^{a}F_{z\tau}^{a} - \underline{2iy\Omega}(F_{xy}^{a}F_{y\tau}^{a} + F_{xz}^{a}F_{z\tau}^{a}) \\ &+ \underline{2ix\Omega}(F_{yx}^{a}F_{x\tau}^{a} + F_{yz}^{a}F_{z\tau}^{a}) - 2xy\Omega^{2}F_{xz}^{a}F_{zy}^{a}]. \end{split}$$

0.04

0.02

0.06

 $\Omega_I[a^{-1}]$

0.08

0.1

0.12

0.4

0.2

0

0

0.12

0.1

restored by Ω_I

0.02

0.04

0.06

 $\Omega_I[a^{-1}]$

0.08

0.5

0

0

Modified Polyakov loop potential

Real rotation

1. First order transition at any ${f \Omega}$

2. T_C decreases with Ω – opposite to small Ω_I

Real rotation

- 1. Crossover transition at larger Ω
- 2. T_C decreases with Ω
- 3. Analytic continuation breaks down for the phase diagram

Blue: $0.9T_0$, Yellow: T_0

Polyakov — Nambu—Jona-Lasinio model

Three-flavor Lagrangian

Thermodynamic potential with boundary condition

$$\begin{split} \Omega_{\rm bl} &= -\sum_{\rm f=u,d,s} \sum_{l=0}^{\infty} \frac{1}{\pi^2 R^2} \sum_{\rm n=1}^{\infty} \Biggl\{ N_{\rm c} \sum_{j=0}^{3} (-1)^{j-1} C_3^j (\epsilon_{\rm f0}^2 + j\Lambda^2) \ln(\epsilon_{\rm f0}^2 + j\Lambda^2) \quad \text{PV regularization} \\ &+ 2T \sum_{t=\pm} \int_0^{\infty} \mathrm{d}k_3 \left[\ln\left(1 + 3L e^{-\tilde{\epsilon}_{\rm f} + i t (l + \frac{1}{2})\tilde{\Omega}_{\rm I}} + 3L^* e^{-2\tilde{\epsilon}_{\rm f} + 2i t (l + \frac{1}{2})\tilde{\Omega}_{\rm I}} + e^{-3\tilde{\epsilon}_{\rm f} + 3i t (l + \frac{1}{2})\tilde{\Omega}_{\rm I}} \right) + c.c. \right] \Biggr\} \\ &\epsilon_f = \sqrt{k_{l,n}^2 + k_3^2 + m_f^2} \qquad \text{Real !} \end{split}$$

Results for imaginary rotation

Polyakov loop potential modified according to perturbative study

Munich's potential works very well

Analytic continuation breaks down for the phase diagram

The effects of real rotation are consistent with the expections from effective models

Thank you very much!