

PERTURBATIVE STUDY OF YANG-MILLS FIELD UNDER (IMAGINARY) ROTATION

November 11 - 13, 2023 Room C101, <u>Jiangwan</u> Physics Building, Fudan University, Shanghai

Organizers: Defu Hou (CCNU), Mei Huang (UCAS), Xu-Guang Huang (Fudan U.), Guo-Liang Ma (Fudan

Hao-Lei Chen

2023年11月13日

OUTLINE

Introduction

- I-loop with background field:
 - A0-condensate
 - colormagnetic condensate
- 2-loop

Feynman rule

Summary

CURRENT STAGE

- Model studies (P)NJL, QM, Bag model, Holographic...
- Rotation + other backgrounds (magnetic field, chemical potential, etc)
- Lattice

V.V. Braguta, A.Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, Phys. Rev. D 103, 094515 (2021) J.-C. Yang and X.-G. Huang, arXiv:2307.05755 [hep-lat].

- Rotational effect on quark has been widely studied
- We don't know much about how rotation affects gluon sector

S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev. Lett. 129, 242002 (2022) M. N. Chernodub, Phys. Rev. D 103, 054027 (2021), Phys. Rev. D 107, 114502 (2023) Y-Q Zhao, S He, D Hou, L Li, and Z Li, JHEP04(2023)115

DISCREPANCY

WHAT'S WRONG?

- Gauge sector contribution?
- Analytical continuation is not applicable?
- Something missed on lattice?
- Or something else?

DIFFICULTIES OF REAL ROTATION

MAYBE RELATED COMMENT

• E. Witten, A Note On Complex Spacetime Metrics, 2111.06514 [hep-th]

This is a little subtle. The thermodynamics of a Schwarzschild black hole is related to a standard thermal ensemble $\text{Tr} \exp(-\beta H)$. The thermodynamics of a rotating (Kerr) black hole is related to a more general ensemble $\text{Tr} \exp(-\beta(H - \Omega J))$ where J is a conserved angular momentum and Ω is called the angular velocity. However, in asymptotically flat spacetime, this ensemble is unstable because a particle far from the black hole can have a negative value of $H - \Omega J$. Hence the quantum corrections to this ensemble are not well-defined, and it turns out that this is reflected in the fact that the quasi-Euclidean metric is not allowable.

IMAGINARY ROTATION

- Boundary condition for space is not necessary
- No sign problem
- Well defined Euclidean field theory
- twisted boundary condition

 $(\tau, \theta, r, z) \sim (\tau + \beta, \theta - \tilde{\Omega}_{\mathrm{I}}, r, z),$

- Analytical continuation back to real rotation G.W. Gibbons and S.W. Hawking, Phys. Rev. D15 (1977) 2752.
- First things first, directly comparation to lattice results

$$g_{\mu\nu} = \begin{pmatrix} -1 - \Omega_I^2 r^2 & y \Omega_I & -x \Omega_I & 0 \\ y \Omega_I & -1 & 0 & 0 \\ -x \Omega_I & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

POLYAKOV LOOP
$$\Phi(\boldsymbol{x}) = \frac{1}{N} \operatorname{tr} \mathcal{P} \exp\left[\int_{0}^{\infty} \Phi(\boldsymbol{x}) - \frac{$$

$$\Phi(oldsymbol{x}) = rac{1}{N} \mathrm{tr} \, \mathcal{P} \expigg[\int_0^eta dx_4 A_4(oldsymbol{x}, x_f) igg],$$

• In flat spacetime

 Dependence on the boundary condition of imaginary time direction?

In (imaginary) rotating frame, which one?

Killing vector $n^{\mu} = (1, 0, -\Omega_I, 0)$ $n^2 = 1$

Killing vector $n^{\mu} = (1, 0, 0, 0)$ $n^2 = -1 - \Omega_I^2 r^2$

REMAINING DIFFICULTIES

- All fields feel rotation
- The interaction vertex is hard to deal with

Jackson, SIAM J. MATH. ANAL. Vol. 3, No. 3, August 1972

FAILED ATTEMPTS

- Kaluza-Klein method Dmitri V. Fursaev, hep-th/0107089 treat the curved background as an Abelian gauge vector field But too hard for me...
- Heat kernel expansion (Schwinger-DeWitt technique)

Feynman Propagator in Curved Space-Time: A Momentum Space Representation, T.S. Bunch and L. Parker, Phys.Rev.D 20 (1979), 2499-2510

Riemann normal coordinates

$$g_{\mu\nu} = \eta_{\mu\nu} - \frac{1}{3} R_{\mu\alpha\nu\beta} y^{\alpha} y^{\beta} - \frac{1}{6} R_{\mu\alpha\nu\beta;\gamma} y^{\alpha} y^{\beta} y^{\gamma} + \left(-\frac{1}{20} R_{\mu\alpha\nu\beta;\gamma\delta} + \frac{2}{45} R_{\alpha\mu\beta\lambda} R^{\lambda}_{\gamma\nu\delta} \right) y^{\alpha} y^{\beta} y^{\gamma} y^{\delta} + \cdots,$$

We don't have curvature...

• Stay in coordinate space? $S_F(x, x') = (i\gamma^{\mu}\nabla_{\mu} - m)G(x, x')$ $G = \frac{-i}{16\pi} \int_0^\infty \frac{ds}{s^2} e^{-i[\sigma^2/s + sm^2 - is\epsilon] + i\frac{\Omega\Sigma_3}{2}\Delta t}$ MJL gap Eq. $\frac{m}{g} = \frac{m}{4\pi} \sum_n \int_{1/\Lambda_{UV}^2}^\infty \frac{ds}{s^2} e^{\frac{-(n\beta)^2 - 2r^2 + 2r^2 \cosh(\Omega n\beta)}{s} - sm^2} \cosh(\frac{\Omega}{2}n\beta)(-1)^n$ Is this really useful?

ONE STRATEGY

- Momentum space representation
- Account for contribution from spin
- No r-dependent part (orbit contribution) \longrightarrow Maybe important when Ω is large

WHAT ELSE?

• I'm not smart enough to solve this exactly, so

• I'm not smart enough to solve this exactly, so

Just do perturbation

PERTURBATIVE EXPANSION OF Ω

Feynman Rule

PERTURBATIVE EXPANSION OF Ω

Feynman Rule

000000

 $2\Omega \hat{J}_z \partial_\tau$

 $-\Omega^2 \hat{J}_z^2$

000000

• Despite tedious calculations, it seems no difficulties to go to higher loop

ADD SOME BACKGROUND FIELDS TO SU(2)

Because its simple

Metric

$$g_{\mu\nu} = \begin{pmatrix} -1 - \Omega_I^2 r^2 & y \Omega_I & -x \Omega_I & 0\\ y \Omega_I & -1 & 0 & 0\\ -x \Omega_I & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Background field formalism

$$\mathcal{A}^a_\mu = \bar{A}^a_\mu + A^a_\mu$$

 $\bar{A}^a_\mu = \delta^a_3 \bar{A}^3_\mu + \delta^a_8 \bar{A}^8_\mu$ in tangent space, we choose $\bar{A}^3_\mu = (\phi, \frac{1}{2}Hy, -\frac{1}{2}Hx, 0)$ for SU(2)

Lagrangian

$$\mathcal{L}_{E} = \frac{1}{4} \bar{F}^{a}_{\mu\nu} \bar{F}^{a\mu\nu} + \frac{1}{2} \bar{F}^{a}_{\mu\nu} F^{a\mu\nu} + \frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \mathcal{L}_{gf} + \mathcal{L}_{gh}$$
$$\mathcal{L}_{gf} = \frac{1}{2} (\nabla^{B}_{\mu} A^{a\mu})^{2} \qquad \text{Feynman gauge}$$
$$\mathcal{L}_{gh} = \bar{c} \nabla^{B}_{\mu} D^{\mu} c$$

A0 condensate, related to Polyakov loop

> Assumption: homogeneous condensate

chromo-magnetic condensate

Some lattice results

V.I. Demchik, N.V. Kolomoyets, and V.V. Skalozub. Spatial structure of the polyakov loop in external chromomagnetic field in lattice su(2) gluodynamics. Visnyk Dnipropetrovskogo universytetu. Fizyka. Radioelectronika, 21(2):13-17, 2013.

V. Demchik and V. Skalozub. Spontaneous creation of chromomagnetic field and A(0)condensate at high temperature on a lattice. J. Phys., A41:164051, 2008.

GAUGE FIELD GO TO TANGENT SPACE

• With the help of vierbein

 $A_{\hat{\mu}} = e_{\hat{\mu}}^{\ \mu} A_{\mu}$

Simple replacement in Lagrangian

- At one loop level, the Lagrangian can be diagonalized with
- 1-loop effective potential

$$V(r) = \frac{1}{2}H^2 + \frac{1}{S}\sum_{n}\sum_{l=-\lambda}^{N-\lambda}\sum_{\lambda\in\mathbb{N}}\sum_{\pm}\int\frac{\mathrm{d}k_z}{2\pi}\ln[(\omega_n - \Omega_I(l\mp 1) + g\phi)^2 + gH(2\lambda + 1\pm 2) + k_z^2]\Phi_l^2(\lambda, \frac{1}{2}gHr^2)$$

$$A^{a}_{\pm} = \frac{1}{\sqrt{2}} (A^{a}_{\hat{x}} + A^{a}_{\hat{y}}), \quad A^{a}_{-} = \frac{1}{\sqrt{2}} (A^{a}_{\hat{x}} - A^{a}_{\hat{y}})$$
$$A^{+}_{\pm} = \frac{1}{\sqrt{2}} (A^{1}_{\pm} + A^{2}_{\pm}), \quad A^{-}_{\pm} = \frac{1}{\sqrt{2}} (A^{1}_{\pm} - A^{2}_{\pm})$$

AO CONDENSATE

S. Chen, K. Fukushima, and Y. Shimada Phys.Rev.Lett. 129 (2022) 24, 242002

- gH=0
- Weiss potential

$$V(\boldsymbol{\phi}; \tilde{\Omega}_{\mathrm{I}})|_{\tilde{r}=0} = \frac{\pi^2 T^4}{3} \sum_{\boldsymbol{\alpha}} \sum_{s=\pm 1} B_4 \left(\left(\frac{\boldsymbol{\phi} \cdot \boldsymbol{\alpha} + s \tilde{\Omega}_{\mathrm{I}}}{2\pi} \right)_{\mathrm{mod } 1} \right).$$

Simple replacement

 $\phi\cdot\alpha\to\phi\cdot\alpha\pm\beta\Omega_I$

 Still true at higher loop? Rotation contribution to 3-gluon interaction and gluon-ghost vertex differently

FIG. 4. Conjectured phase diagram on the $\tilde{\Omega}_{\rm I}$ -T plane around the rotation axis, $\tilde{r} = 0$, for the SU(3) case. Solid curves represent the phase transition.

CHROMO-MAGNETIC CONDENSATE • At r=0 scalar vector $V(0) = \frac{1}{2}H^2 + \frac{gH}{2\pi\beta} \sum_n \sum_{\lambda \in \mathbb{N}} \sum_{s=\pm 1} \int \frac{\mathrm{d}k_z}{2\pi} \ln[(\omega_n + s\Omega_I + g\phi)^2 + gH(2\lambda + 1 + 2s) + k_z^2]$ n = 2• Ω=0, T=0: Savvidy Vacuum avvidy, Phys. Lett. B, 71:133, 1977 n = 1, s = 1 Nielsen-Olsen instability N.K Nielsen and P. Olesen., Nucl. Phys. B, 144(2-3):376-396, 1978. n = 1n = 2, s = n = 0, s =• When $\Omega = 0$, A0 condensate can help n = 0n = 1, s = -1n = 0, s = -1Tachyonic mode when $\lambda = 0$, s = -1

CHROMO-MAGNETIC CONDENSATE

Effective potential

- No replacement $\phi \cdot \alpha \rightarrow \phi \cdot \alpha \pm \beta \Omega_I$
- Imaginary part can be cured at 2-loop

M. Bordag, V. Skalozub, Eur. Phys. J.C 82 (2022) 5, 390

GO TO HIGHER LOOP

2-loop correction

- gH=0, again to check $\phi \cdot \alpha \rightarrow \phi \cdot \alpha \pm \beta \Omega_I$
- So we need Feynman rule under rotation

FEYNMAN RULE FOR SU(2)

• Gluon propagator a, μ was a b, ν

$$G^{ab}_{\mu\nu} = \frac{1}{2} \begin{pmatrix} G_{\mu\nu}(p_4 + g\phi) + G_{\mu\nu}(p_4 - g\phi) & -iG_{\mu\nu}(p_4 + g\phi) + iG_{\mu\nu}(p_4 - g\phi) & 0\\ i(G_{\mu\nu}(p_4 + g\phi) - iG_{\mu\nu}(p_4 - g\phi)) & G_{\mu\nu}(p_4 + g\phi) + G_{\mu\nu}(p_4 - g\phi) & 0\\ 0 & 0 & 2G_{\mu\nu}(p_4) \end{pmatrix} \xrightarrow{g\phi = 0} \delta^{ab}G_{\mu\nu}$$

where

$$G_{\mu\nu}(x,x') = \frac{\mathrm{e}^{ip_4\Delta\tau + ip_z\Delta z}}{(ip_4 - i\Omega_I l)^2 + \mathbf{p}^2} \begin{pmatrix} \phi_l \phi_l^{\prime*} & 0 & 0 & 0 \\ 0 & \frac{1}{2}(\phi_{l+1}\phi_{l+1}^{\prime*} + \phi_{l-1}\phi_{l-1}^{\prime*}) & \frac{i}{2}(\phi_{l+1}\phi_{l+1}^{\prime*} - \phi_{l-1}\phi_{l-1}^{\prime*}) & 0 \\ 0 & -\frac{i}{2}(\phi_{l+1}\phi_{l+1}^{\prime*} - \phi_{l-1}\phi_{l-1}^{\prime*}) & \frac{1}{2}(\phi_{l+1}\phi_{l+1}^{\prime*} + \phi_{l-1}\phi_{l-1}^{\prime*}) & 0 \\ 0 & 0 & 0 & \phi_l \phi_l^{\prime*} \end{pmatrix}$$

Gauge dependence

$$G_{\mu\nu}^{\xi}(x,x') = G_{\mu\nu}(x,x') - (1-\xi)\partial_{\mu}\partial_{\nu}' \frac{\mathrm{e}^{ip_4\Delta\tau + ip_z\Delta z}\phi_l\phi_l'^*}{[(ip_4 - i\Omega_I l)^2 + \mathbf{p}^2]^2}$$

GLUON PROPAGATOR

Euclidean thermal Green functions of photons in generalized Euclidean Rindler spaces for any Feynman - like gauge V. Moretti, Int.J.Mod.Phys.A 12 (1997), 3787-3798, hep-th/9607178

Eigenvalue equation

$$\nabla_{\mu}\nabla^{\mu}A_{\nu} - (1 - \frac{1}{\xi})(\nabla_{\nu}\nabla^{\mu}A_{\mu}) = \lambda A_{\nu}$$

For Feynman gauge

$$\begin{array}{ll} A^{(1)}_{\mu} = (1,0,0,0)\phi_l & j = l \\ A^{(2)}_{\mu} = (0,1,i,0)\phi_l & \text{with} & j = l-1 \\ A^{(3)}_{\mu} = (0,1,-i,0)\phi_l & j = l+1 \\ A^{(4)}_{\mu} = (0,0,0,1)\phi_l & j = l \end{array}$$

• For arbitrary ξ , use

 $A^{\xi}_{\mu} = (\partial_{\tau}, \partial_x, \partial_y, \partial_z)\phi_l$

• Propagator end at the center can be expanded as plane wave

 $\int p_t dp_t \phi_l(0) \phi_l^{\prime*}(r) = \int p_t dp_t J_0(p)$ $= \int p_t dp_t dp_\theta e^{ip_t \cos \theta_p} = \int dp_x dp_y e^{ip_x x + ip_y y}$

 $G_{\mu\nu} = -\eta_{\mu\nu}^{\parallel} G(ip_4) - \eta_{\mu\nu}^{\perp} [G(ip_4 + i\Omega_I) + G(ip_4 - i\Omega_I)] + S_{z\mu\nu} [G(ip_4 + i\Omega_I) - G(ip_4 - i\Omega_I)]$

FEYNMAN RULE FOR SU(2)

Ghost propagator

a*b*

$$G^{ab} = \frac{1}{2} \begin{pmatrix} G(p_4 + g\phi) + G(p_4 - g\phi) & -iG(p_4 + g\phi) + iG(p_4 - g\phi) & 0\\ i(G(p_4 + g\phi) - iG(p_4 - g\phi)) & G(p_4 + g\phi) + G(p_4 - g\phi) & 0\\ 0 & 0 & 2G(p_4) \end{pmatrix} \xrightarrow{g\phi = 0} \delta^{ab}G$$

Four-gluon interaction

FEYNMAN RULE FOR SU(2)

Three-gluon interaction

where $(iP^{ia\lambda})^{\sigma\nu} = ip^{\lambda}\eta^{\sigma\nu}\delta^{ia} - \eta^{\lambda4}i\Omega_I\hat{J}_z^{\sigma\nu}\delta^{ia} - \eta^{\lambda4}\eta^{\sigma\nu}g\phi f^{i3a}$

Gluon-ghost interaction

2-LOOP CORRECTION AT THE CENTER

Rotation only result

Tedious but possible

 $-\frac{1}{2}$

$$\frac{3}{2}g^{2}\int_{k}\int_{q}[2(k_{3}p_{3}+k_{4}p_{4})G(ik_{4})+(k_{1}p_{1}+k_{2}p_{2})(G(ik_{4}+i\Omega_{I})+G(ik_{4}-i\Omega_{I}))]G(ip_{4})G(-ik_{4}+ip_{4})$$

$$\frac{1}{8}$$

$$-\frac{3}{4}g^2 \int_k \int_q \{4G(ik_4)G(ip_4) + 4G[ik_4)(G(ip_4 + i\Omega_I) + G(ip_4 - i\Omega_I)] + 4[G(ik_4 + i\Omega_I) + G(ik_4 - i\Omega_I)]G(ip_4) + [G(ik_4 + i\Omega_I) + G(ik_4 - i\Omega_I)]G(ip_4 + i\Omega_I) + G(ip_4 - i\Omega_I)]G(ip_4 - i\Omega_I)]G(ip_4) + [G(ik_4 + i\Omega_I) + G(ik_4 - i\Omega_I)]G(ip_4 - i\Omega_I)]G(ip_4 - i\Omega_I)]G(ip_4) + [G(ik_4 - i\Omega_I) + G(ik_4 - i\Omega_I)]G(ip_4 - i\Omega_I)]G(ip_4) + [G(ik_4 - i\Omega_I) + G(ik_4 - i\Omega_I)]G(ip_4 - i\Omega_I)]G(ip_4) + [G(ik_4 - i\Omega_I) + G(ik_4 - i\Omega_I)]G(ip_4 - i\Omega_I)]$$

Still ongoing...

Too long to be shown

SUMMARY

- As less assumption as possible
- At least we can do some calculation of QCD under (imaginary) rotation
- Some other quantities to compare with lattice
- ZZZ

THANKS

