Summary and Ou 000 Appendix 00000

# Spectral function and Spectral properties in a rotating QCD medium

### Minghua Wei

Fudan University

### November 13, 2023

Based on: arxiv:2303.01897 Phys.Rev.D 105 (2022) 5, 054014 Chin.Phys.C 46 (2022) 2, 024102 Collaborators: Mei Huang, Yin Jiang, Chowdhury Aminul

Fudan University

Spectral function and Spectral properties in a rotating QCD medium

Minghua Wei

# Introduction

- **2** Thermal dilepton rate and its ellipticity
- **3** Meson Spectra and Spin Alignment
- **4** Summary and Outlook
- **5** Appendix

Minghua Wei

Fudan University

# 1 Introduction

- 2 Thermal dilepton rate and its ellipticity
- 3 Meson Spectra and Spin Alignment
- 4 Summary and Outlook
- 6 Appendix

Minghua Wei

Fudan University



# Magnetic Field and Vorticity in Noncentral Collisions



Becattini F, Karpenko I, Lisa M, et al.PRC2017



W.-T. Deng, X.-G. Huang, PRC 85, 044907 (2012)



Deng W T, Huang X G, PRC2016; Deng X G, Huang X G, Ma Y G. PRC2020





#### Minghua Wei

#### Introduction Thermal dilepton rate and its ellipticity 0000

Meson Spectra and Spin Alignment

Summary and Outlook

# Geometry in rotating frame

Metric in a co-moving frame

$$g_{\mu\nu} = \eta_{\mu\nu} + \eta_{\mu j} \delta^0_\nu v_j + \eta_{i\nu} \delta^0_\mu v_i + \eta_{ij} \delta^0_\mu \delta^0_\nu v_i v_j \tag{1}$$

Dirac equation in a co-moving frame

$$[i\bar{\gamma}^{\mu}(\partial_{\mu}+\Gamma_{\mu})-M_{f}]\psi=0. \tag{2}$$

• Spinor connection is  $\Gamma_{\mu} = \frac{1}{4} \times \frac{1}{2} [\gamma^a, \gamma^b] \Gamma_{ab\mu}$ , and nonzero term of Spin connection is

$$\begin{split} &\Gamma_{ij0} = \frac{1}{2} \left( \partial_i v_j - \partial_j v_i \right), \text{ rotation} \\ &\Gamma_{i0j} = \frac{1}{2} \left( \partial_i v_j + \partial_j v_i \right), \text{ expansion, shear} \\ &\Gamma_{0i0} = -\frac{1}{2} \left( v_j \partial_i v_j + v_j \partial_j v_i \right). \end{split}$$

• In a uniform rotating frame, i.e.  $\vec{v} = \vec{\Omega} \times \vec{x}$ , Spinor connection is:

$$\Gamma_{ij0} = \Omega^k \epsilon_{ijk} \quad \Gamma_0 = \frac{1}{8} \left[ \gamma^i, \gamma^j \right] \Omega^k \epsilon_{ijk} \tag{4}$$

#### Minghua Wei

Fudan University

# Propagator and Self energy

• Dirac equation in a uniform rotating frame

$$[i\gamma^a\partial_a + \gamma^0\Omega\hat{J}_z - M_f]\psi = 0.$$
<sup>(5)</sup>

quark propagator

$$\begin{split} S(\tilde{r};\tilde{r}') &= \frac{1}{(2\pi)^2} \sum_n \int \frac{dk_0}{2\pi} \int k_t dk_t \int dk_z \frac{e^{in\left(\theta - \theta'\right)} e^{-ik_0\left(t - t'\right) + ik_z\left(z - z'\right)}}{[k_0 + (n + \frac{1}{2})\Omega]^2 - k_t^2 - k_z^2 - M_f^2} \\ &\times \left\{ \left[ [k_0 + (n + \frac{1}{2})\Omega]\gamma^0 - k_z\gamma^3 + M_f \right] \right. \\ &\times \left[ J_n(k_tr) J_n(k_tr')\mathcal{P}_+ + e^{i(\theta - \theta')} J_{n+1}(k_tr) J_{n+1}(k_tr')\mathcal{P}_- \right] \\ &- i \gamma^1 k_t e^{i\theta} J_{n+1}(k_tr) J_n(k_tr')\mathcal{P}_+ - \gamma^2 k_t e^{-i\theta'} J_n(k_tr) J_{n+1}(k_tr')\mathcal{P}_- \right\}, \end{split}$$
(6)

One-loop Polarization function

$$\Pi^{ab}(q) = -iN_f N_c \int d^4 \tilde{r} \operatorname{Tr}_D[i\gamma^a S(0;\tilde{r})i\gamma^b S(\tilde{r};0)] e^{iq\cdot\tilde{r}}, \quad (7)$$

Introduction

# 1 Introduction

- 2 Thermal dilepton rate and its ellipticity
- 3 Meson Spectra and Spin Alignment
- 4 Summary and Outlook
- 6 Appendix

Minghua Wei

Fudan University



## Dilepton Rate in QGP

Dilepton in HIC





A (1) > (1)

 The dilepton rate is related to the Lepton tensor and the photon tensor:

$$dR_{II} = 2\pi e^2 e^{-\beta\omega} L_{\mu\nu} (p_1, p_2) \rho^{\mu\nu} (\omega, \mathbf{q}) \frac{d^3 \mathbf{p}_1}{(2\pi)^3 E_1} \frac{d^3 \mathbf{p}_2}{(2\pi)^3 E_2} \quad (8)$$

Combined with Lepton tensor for plane wave

$$\frac{dR_{l\bar{l}}}{d^4q} = \frac{\alpha}{12\pi^4} \frac{n_B(\omega)}{q^2} \left(1 + \frac{2m_l^2}{q^2}\right) \left(1 - \frac{4m_l^2}{q^2}\right)^{1/2} \operatorname{Im}\left[\Pi^{\mu}_{\mu}(\omega, \mathbf{k})\right].$$
(9)

Minghua Wei

Fudan University

# Scenarios for Dilepton production in QGP

Thermal dilepton rate and its ellipticity

000000000000

• Lepton pairs not affected by the medium



Meson Spectra and Spin Alignment

$$L^{\mu\nu} = 2\left(-q^2 g^{\mu\nu} + q^{\mu} q^{\nu} - k^{\mu} k^{\nu}\right)$$
(10)

Lepton pairs affected by rotating medium or EM field.



 Lepton states in the rotating medium | p<sub>t</sub>, p<sub>z</sub>, n, s → states in the detectors | p, s >

#### Minghua Wei



t Summary and Ou

Appendi 00000

# Spectral function in a rotating QCD medium

• Spectral function is related to the imaginary part of the vector current-current correlation function at one-loop level:

$$\sigma_V(q) = \frac{1}{\pi} \mathrm{Im} \Pi^a_a(q), \qquad (11)$$



Figure 1: Spectral function as a function of temperature scaled invariant mass for different values of rotation.

10 / 36



# Spectral function in a rotating QCD medium

• Spectral function is related to the imaginary part of the vector current-current correlation function at one-loop level:

$$\sigma_V(q) = \frac{1}{\pi} \mathrm{Im} \Pi_a^a(q), \qquad (12)$$



Figure 2: Left panel: SF as a function of temperature scaled invariant mass for different values of temperature; Right panel: SF for different values of chemical potential.

n Alignment Sum

Summary and Outlook

Appendix 00000

# Dilepton Rate Enhancement under Rotation

Dilepton rate expression:

$$\frac{dR_{l\bar{l}}}{d^4q} = \frac{\alpha}{12\pi^4} \frac{n_B(\omega)}{M^2} \operatorname{Im}\left[\Pi_a^a(\omega, |\mathbf{q}|, q_z)\right],\tag{13}$$



Figure 3: Dilepton rate as a function of invariant mass with different angular velocities.

Summary and Outlook

# *q* dependence for $Im\Pi^{ab}$



Figure 4: A sketch map for dilepton emissions from rotating QGP.

Explicit form of  $\text{Im}\Pi^{ab}$ :

$$\begin{split} &\operatorname{Im}[\Pi^{11}(\omega,\vec{q}) + \Pi^{22}(\omega,\vec{q})] \\ &= -\frac{1}{2} \pi N_f N_c \sum_{\eta=\pm 1} \int_{\rho_{-}^{\Omega}}^{\rho_{+}^{\Omega}} \frac{\rho dp}{(2\pi)^2} \cdot \frac{1}{|\vec{q}| E_p} \\ &\times \left\{ 2E_p(\omega - E_p + \eta \Omega) + [(3\frac{q_2^2}{q^2} - 1)(p\cos\theta_1)^2 \\ &+ p^2(1 - \frac{q_2^2}{q^2}) + 2\frac{q_2^2}{q} p\cos\theta_1] + 2M_f^2 \right\} \\ &\times [1 - f(E_p - \mu - \frac{\eta \Omega}{2}) - f(E_p + \mu - \frac{\eta \Omega}{2})]. \end{split}$$
(14)

Constrain the integral region and the angle between  $\vec{p}$  and  $\vec{q}$ :

$$p_{\pm}^{\Omega} = \pm \frac{|\vec{q}|}{2} + \frac{\omega + \eta \Omega}{2} \sqrt{1 - \frac{4M_f^2}{(\omega + \eta \Omega)^2 - \vec{q}^2}} \quad \cos \theta_1 = \frac{(\omega + \eta \Omega)^2 - 2(\omega + \eta \Omega) \sqrt{p^2 + M_f^2} - q^2}{2pq} \quad (15)$$

Minghua Wei

Spectral function and Spectral properties in a rotating QCD medium

13 / 36



# $\phi$ dependence for Im $\Pi^{ab}$

Elliptic flow coefficient  $v_2$  is calculated in mid-rapidity, i.e.  $q_x = 0$  and  $\frac{q_z}{q_T} = \sin \phi$ . One can extract  $\phi$  dependent part of Im∏<sup>ab</sup>:

 $(\operatorname{Im}[\Pi^{11}(\omega, \vec{q}) + \Pi^{22}(\omega, \vec{q})])_{dep}$ 

$$= -\frac{1}{2}\pi N_f N_c \cos 2\phi \sum_{\eta=\pm 1} \int_{p_-^{\Omega}}^{p_+^{\Omega}} \frac{pdp}{(2\pi)^2} - \frac{\frac{3}{2}(p\cos\theta_1)^2 + \frac{p^2}{2} - pq\cos\theta_1}{qE_p}$$
(16)

$$\times \left[1-f(\mathcal{E}_p-\mu-\frac{\eta\Omega}{2})-f(\mathcal{E}_p+\mu-\frac{\eta\Omega}{2})\right]
ight\} ,$$

$$Im\Pi^{33}(\omega, \vec{q})_{dep} = -\frac{1}{2}\pi N_f N_c \cos 2\phi \sum_{\eta=\pm 1} \int_{p_-}^{p_+} \frac{pdp}{(2\pi)^2} \left\{ \frac{\left[\frac{3}{2}(p\cos\theta_0)^2 - \frac{1}{2}p^2 + pq\cos\theta_0\right]}{qE_p} \times \left[1 - f(E_p - \mu - \frac{\eta\Omega}{2}) - f(E_p + \mu - \frac{\eta\Omega}{2})\right] \right\}.$$
(17)

Minghua Wei

Fudan University

Introduction Thermal dilepton rate and its ellipticity 0000000000000

Meson Spectra and Spin Alignm

Spin Alignment Summ

Summary and Outlook

Appendix 00000

### Ellipticity of Dilepton Production under Rotation

• Angular dependence of dilepton production rate in the transverse plane.

$$E \frac{\mathrm{d}^{3}R}{\mathrm{d}^{3}\mathbf{q}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}R}{q_{T} \mathrm{d}q_{T} \mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos\left[n\left(\phi - \Psi_{\mathrm{RP}}\right)\right]\right), \quad (18)$$

Figure 5: Elliptic flow  $v_2$  as a function of  $q_T$  with T=160 MeV,M=200MeV and different angular velocities  $\Omega = 0.03, 0.05, 0.1, 0.15, 0.2$  GeV.

Minghua Wei

Spectral function and Spectral properties in a rotating QCD medium

15 / 36

Summary and Outlook

### Invariant mass dependence of elliptic flow v<sub>2</sub>



Figure 6: Elliptic flow  $v_2$  at T=160 MeV(left) and 600 MeV(right).



Figure 7: Dilepton production and elliptic flow from an anisotropic QGP (Babak S. Kasmaei and Michael Strickland, PRD2019)

Minghua Wei

Fudan University

### Related works by other people

- Quark propagator and di-lepton production rate in a hot, dense and very strongly magnetized rotating Quark-Gluon Plasma[Aritra Das, arxiv:2310.11869]
- Bulk viscosity of rotating, hot and dense spin 1/2 fermionic systems from correlation functions

$$\Pi_{\zeta}(q) = i \int d^4 r e^{iq \cdot r} \left\langle \mathcal{P}^*(r) \mathcal{P}^*(0) \right\rangle_R \tag{19}$$

[Sarthak Satapathy, arxiv:2307.09953]

Electromagnetic radiation at extreme angular velocity

$$S_{fi} = -ie \int dt \int d\phi \int dz \boldsymbol{j}_{fi}(t,\phi,z) \cdot \boldsymbol{A}^*(t,\phi,z,R) \quad (20)$$

[Matteo Buzzegoli and Kirill Tuchin, arxiv:2308.10349]

Minghua Wei

Fudan University

# Introduction

- 2 Thermal dilepton rate and its ellipticity
- **3** Meson Spectra and Spin Alignment
- 4 Summary and Outlook
- 6 Appendix

Minghua Wei

Fudan University

# Methods for QCD Phase diagram under rotation

• NJL model with spinor connection[arxiv:1606.03808]

$$\mathcal{L} = \bar{\psi} \left[ i \bar{\gamma}^{\mu} \left( \partial_{\mu} + \Gamma_{\mu} \right) - m \right] \psi + G_{S} \left[ \left( \bar{\psi} \psi \right)^{2} + \left( \bar{\psi} i \gamma_{5} \vec{\tau} \psi \right)^{2} \right]$$
(21)

Meson Spectra and Spin Alignment

00000000000

3-flavor NJL model with spinor connection

$$\mathcal{L}_{3NJL} = \bar{\psi} [i\bar{\gamma}^{\mu} (\partial_{\mu} + \Gamma_{\mu}) - m_{f}]\psi + G_{5} \sum_{a=0}^{8} \left[ (\bar{\psi}\lambda^{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda^{a}\psi)^{2} \right] - G_{V} \sum_{a=0}^{8} \left[ (\bar{\psi}\gamma_{\mu}\lambda^{a}\psi)^{2} + (\bar{\psi}i\gamma_{\mu}\gamma_{5}\lambda^{a}\psi)^{2} \right] - K \left[ \det \bar{\psi} (1 + \gamma_{5}) \psi + \det \bar{\psi} (1 - \gamma_{5}) \psi \right],$$
(22)

#### Minghua Wei

# QCD Phase diagram

Grand potential •

$$\Omega_{f}(r) = \frac{N_{c}}{8\pi^{2}} T \sum_{n} \int dk_{t}^{2} \int dk_{z} \left[ J_{n} \left( k_{t} r \right)^{2} + J_{n+1} \left( k_{t} r \right)^{2} \right] \\ \times \left[ E_{k} / T + \ln \left( 1 + e^{-\left( E_{k} - \left( n + \frac{1}{2} \right) \Omega \right) / T} \right) \\ + \ln \left( 1 + e^{-\left( E_{k} + \left( n + \frac{1}{2} \right) \Omega \right) / T} \right) \right].$$
(23)

$$\Omega_{\rm tot}(r) = \sum_{f=u,d,s} \left( 2G_S \sigma_f^2 - \Omega_f \right) + 4K \sigma_u \sigma_d \sigma_s.$$
(24)

Gap equations and dynamical quark masses

$$\frac{\partial \Omega_{\text{tot}}}{\partial \sigma_f} = 0, \quad \frac{\partial^2 \Omega_{\text{tot}}}{\partial \sigma_f^2} > 0.$$

$$M_f \equiv m_f - 4G_S \sigma_f + 2K \prod_{f' \neq f} \sigma_{f'}.$$
(25)
(25)

Minghua Wei

Fudan University

it Summary and Outlook

Appendia 00000

### Chiral condensates and dynamical quark masses



Figure 8: Chiral condensates as functions of angular velocity.



Figure 9: Dynamical quark masses as functions of angular velocity.

Minghua Wei

## Random Phase Approximation

**RPA** 

Pole mass

$$D_{\sigma}(q^2) = \frac{2G_S}{1 - 2G_S \Pi_s(q^2)},$$
(27)

Polarization function

$$\Pi_{s}(q) = -i \int d^{4}\tilde{r} \operatorname{Tr}_{sfc}[iS(0;\tilde{r})iS(\tilde{r};0)]e^{iq\cdot\tilde{r}}, \qquad (28)$$

Quark propagator

$$S(\tilde{r};\tilde{r}') = \frac{1}{(2\pi)^2} \sum_{n} \int \frac{dk_0}{2\pi} \int k_t dk_t \int dk_z \frac{e^{in\left(\theta - \theta'\right)} e^{-ik_0\left(t - t'\right) + ik_z\left(z - z'\right)}}{[k_0 + (n + \frac{1}{2})\Omega]^2 - k_t^2 - k_z^2 - M_f^2} \\ \times \left\{ \left[ [k_0 + (n + \frac{1}{2})\Omega + \mu]\gamma^0 - k_z\gamma^3 + M_f \right] \right] \\ \times \left[ J_n(k_t r) J_n(k_t r')\mathcal{P}_+ + e^{i(\theta - \theta')} J_{n+1}(k_t r) J_{n+1}(k_t r')\mathcal{P}_- \right] \\ - i \ \gamma^1 k_t e^{i\theta} J_{n+1}(k_t r) J_n(k_t r')\mathcal{P}_+ - \gamma^2 k_t e^{-i\theta'} J_n(k_t r) J_{n+1}(k_t r')\mathcal{P}_- \right\},$$
(29)

Minghua Wei

Fudan University



# Scalar Meson Mass

- Scalar Meson Mass at T=150 MeV ,  $\mu{=}100 {\rm MeV}$  , and  $\mu{=}200 {\rm MeV}$ 



#### Minghua Wei

Fudan University

### Vector Meson Mass

Polarization function

$$\Pi^{\mu\nu,ab}(q) = -i \int d^4 \tilde{r} \, Tr_{sfc}[i\gamma^{\mu}\tau^a S(0;\tilde{r})i\gamma^{\nu}\tau^b S(\tilde{r};0)]e^{iq\cdot\tilde{r}}.$$
(30)

• Propagator can be decomposed into three spin states

$$\Pi_{\rho}^{\mu\nu} = A_1^2 P_1^{\mu\nu} + A_2^2 P_2^{\mu\nu} + A_3^2 L^{\mu\nu} + A_4^2 u^{\mu} u^{\nu}, \qquad (31)$$

$$D^{\mu\nu}_{\rho}(q^2) = D_1(q^2)P_1^{\mu\nu} + D_2(q^2)P_2^{\mu\nu} + D_3(q^2)L^{\mu\nu} + D_4(q^2)u^{\mu}u^{\nu},$$
(32)

Pole mass

$$D_i(q^2) = \frac{4G_V}{1 + 4G_V A_i^2}, \quad 1 + 4G_V A_i^2 = 0$$
(33)

#### Minghua Wei

Fudan University

### Spin Alignment with Thermal Equilibrium

Meson spectral function[arxiv:2209.01872]

$$\xi_{\lambda}(k) \equiv \frac{1}{\pi} \operatorname{Im} D_{\lambda}(k) = \frac{(4G_{V})^{2} \operatorname{Im} A_{\lambda}(k)}{\pi \left\{ \left[ 1 + 4G_{V} \operatorname{Re} A_{\lambda}(k) \right]^{2} + \left[ 4G_{V} \operatorname{Im} A_{\lambda}(k) \right]^{2} \right\}}$$
(34)

Meson Spectra and Spin Alignment

000000000000

Summary and Outlook

Assuming thermal equilibrium, particle number density for

$$f_{\lambda} = \frac{1}{\exp\left(M_{\lambda}/T\right) - 1} + \int d\omega \frac{2\omega\xi_{\lambda}^{*}(\omega)}{\exp(\omega/T) - 1}$$
(35)

Spin alignment

$$\rho_{00} \equiv \frac{f_0}{\sum_{\lambda=0,\pm 1} f_\lambda} \tag{36}$$

Minghua Wei

Fudan University





#### Minghua Wei

Fudan University



### Spectral functions for Vector Meson $\rho$

• For  $\rho$  mesons at the temperature T = 150 MeV, spectral functions only have continuum parts and appear as single peaks.



#### Minghua Wei

Fudan University

# Introduction Thermal dilepton rate and its ellipticity Meson Spectra and Spin Alignment Summary and Outlook Approx 0000000000 Spin alignment for Vector Meson $\phi$

• Spin alignment for Vector Meson  $\phi$  and  $\rho$  in 150 MeV



 Comparison with leading order of quark coalescence model[arxiv:1711.06008]

$$\rho_{00}^{\phi,coal} = \frac{1}{3} - \frac{1}{9}(\beta\Omega)^2$$
(37)  
$$\rho_{00}^{\phi}(\Omega) = \frac{1}{3} - 5.10\Omega^2 + 39.62\Omega^4,$$
(38)

#### Minghua Wei

# 1 Introduction

- 2 Thermal dilepton rate and its ellipticity
- 3 Meson Spectra and Spin Alignment
- **4** Summary and Outlook
- **6** Appendix

Minghua Wei

Fudan University

| Introduction | Thermal dilepton rate and its ellipticity |  |
|--------------|-------------------------------------------|--|
|              |                                           |  |

# Summary and Outlook

- In a rotating medium, the dilepton rate is enhanced;
- Azimuthal anisotropy of the dilepton production is induced by rotation;
- $\rho_{00} 1/3$  is negative in the rotating medium. Compared with the quark coalescence model, results from NJL model don't have remarkable improvement currently.
- cold vacuum doesn't rotate:  $| 0 \rangle_{rotating} = | 0 \rangle_{no-rotating}$ , How about  $| \Omega \rangle_{rotating}$  and  $| \Omega \rangle_{no-rotating}$ ? Perturbative study is important(\*But hard\*)!
- Other hydrodynamic gradients(vorticity, expansion, shear tensor) should take into account(see Feng Li,Shuai Liu, 2206.11890).

Thanks for your attention!

Minghua Wei

Fudan University

# 1 Introduction

- 2 Thermal dilepton rate and its ellipticity
- 3 Meson Spectra and Spin Alignment
- 4 Summary and Outlook
- **5** Appendix

Minghua Wei

Fudan University

Appendix

# An optional profile



$$v_1 = v_x = -\Omega y$$
  

$$v_2 = v_y = 0$$
(39)

$$\Gamma_{120} = \frac{1}{2} \left( \partial_x v_y - \partial_y v_x \right) = \frac{1}{2} \Omega$$

$$\Gamma_{102} = -\frac{1}{2} \Omega \quad \Gamma_{201} = -\frac{1}{2} \Omega$$

$$\Gamma_{010} = \frac{1}{2} \left( v_j \partial_x v_j + v_j \partial_j v_x \right) = \frac{1}{2} v_y \cdot \Omega = 0$$

$$\Gamma_{020} = \frac{1}{2} \left( v_j \partial_y v_j + v_j \partial_j v_y \right) = \frac{1}{2} v_x \Omega = -\frac{1}{2} y \Omega^2$$
(40)

#### Minghua Wei

Fudan University



• singularities show up in  $v_2$  as a function of  $q_T$ . These singularities emerge from a 4-momentum non-conservation in the rotating frame, because  $\delta$  function in the imaginary part has been modified by  $\delta(\omega - E_p - E_k + \eta\Omega)$  As a consequence,  $p_{\pm}^{\Omega}$  will reach an extremely large value to satisfy  $\omega - E_p - E_k + \eta\Omega = 0$ . We have shown that the rotation effect had modified the domain of integration by  $p_{\pm}^{\Omega} = \pm \frac{q}{2} + \frac{\omega + \eta\Omega}{2} \sqrt{1 - \frac{4M_r^2}{(\omega + \eta\Omega)^2 - q^2}}$ . Resonance is generated

at  $q_t = \omega + \eta \Omega$ , and the singularity will show up with uniform rotation, which is similar to the forced oscillator without damping.

34 / 36

Appendix

# Components for ImΠ<sup>ab</sup>

$$\begin{aligned} &\operatorname{Im}[\Pi^{11}(\omega, \vec{q}) + \Pi^{22}(\omega, \vec{q})] \\ &= -\frac{1}{2}\pi N_{f} N_{c} \sum_{\eta=\pm 1} \int_{p_{-}^{\Omega}}^{p_{+}^{\Omega}} \frac{p dp}{(2\pi)^{2}} \cdot \frac{1}{|\vec{q}|E_{p}} \\ &\times \left\{ 2E_{p}(\omega - E_{p} + \eta\Omega) + \left[ (3\frac{q_{z}^{2}}{q^{2}} - 1)(p\cos\theta_{1})^{2} \right] \right\} \\ &+ p^{2}(1 - \frac{q_{z}^{2}}{q^{2}}) + 2\frac{q_{z}^{2}}{q}p\cos\theta_{1} + 2M_{f}^{2} \right\} \\ &\times \left[ 1 - f(E_{p} - \mu - \frac{\eta\Omega}{2}) - f(E_{p} + \mu - \frac{\eta\Omega}{2}) \right] . \end{aligned}$$

$$\begin{aligned} p_{\pm}^{\Omega} &= \pm \frac{|\vec{q}|}{2} + \frac{\omega + \eta\Omega}{2} \sqrt{1 - \frac{4M_{f}^{2}}{(\omega + \eta\Omega)^{2} - \vec{q}^{2}}} \end{aligned}$$

$$(42)$$

Minghua Wei

### Expansion

$$\frac{1/(\exp[(M)/T] - 1)}{1/(\exp[(M + \Omega)/T] - 1) + 1/(\exp[(M)/T] - 1) + 1/(\exp[(M - \Omega)/T]}$$
(43)

The result is:

$$\rho_{00}^{\phi} = \frac{1}{3} - \frac{\left(e^{M/T} \left(1 + e^{M/T}\right)\right) \Omega^{2}}{9 \left(\left(-1 + e^{M/T}\right)^{2} T^{2}\right)} + \frac{e^{M/T} \left(-1 - 7e^{M/T} - 3e^{\frac{2M}{T}} + 3e^{\frac{3M}{T}}\right)}{108 \left(-1 + e^{M/T}\right)^{4} T^{4}}$$
(44)

Minghua Wei

Fudan University