Measurement of V_{cb} from $WW \rightarrow \mu \nu q q$ at the CEPC

Hao Liang, Yongfeng Zhu, Manqi Ruan

IHEP

March 24th, 2023

Introduction

- Significance of V_{cb}
 - The normalization of the unitarity triangle
 - New Physics study in B_s/B_d mixing

Simplified analysis. only minimum number of inputs: f_{B_d} , B_{B_d} , Δm_d , $|V_{ud}|$, $|V_{ub}|$, $|V_{cd}|$, $|V_{cb}|$, γ

$$\delta(\sqrt{|\Delta_d|} - 1) = \frac{\delta f_{B_q}}{f_{B_q}} \oplus \frac{\delta \hat{B}_{B_d}}{2\hat{B}_{B_d}} \oplus \frac{\delta \Delta m_d}{2\Delta m_d} \oplus \frac{\delta |V_{ud}V_{ub}^*| \cos^2 \alpha}{|V_{ud}V_{ub}^*|} \oplus \frac{\delta |V_{cd}V_{cb}^*| \cos^2 \beta}{|V_{cd}V_{cb}^*|} \oplus \frac{\delta \gamma \sin \beta \sin \alpha}{\sin \gamma} \oplus \frac{\delta \gamma \sin \beta \sin \alpha}{\delta \gamma} \oplus \frac{\delta \gamma \sin \beta}{\delta \gamma} \oplus \frac{\delta \beta \cos \beta}{\delta \gamma} \oplus \frac{\delta \beta \cos \beta}{\delta \gamma} \oplus \frac{\delta \gamma \sin \beta}{\delta \gamma} \oplus \frac{\delta \beta \cos \beta}{\delta \gamma} \oplus \frac{\delta \gamma \cos \beta}{\delta \gamma$$

- Significance of *V*_{cb} at EW scale
 - $|V_{cb}|$ measured by *b*-hadrons decays
 - non-perturbative QCD contribution
 - Results show discrepancy between inclusive and exclusive analyses
 - *V_{cb}* by W decay
 - Perturbatively QCD
 - Normally b-hadrons decays is not sensitive to NP, what if the W boson decays?

Study Setup

- Parameters in CDR:
 - Lumi. 5600 fb⁻¹ E = 240 GeV
 - 11 thousand $\mu v c b$ in 13 million $\mu v q q$
- Study $\mu \nu W$ as first example
 - Cleanness of μ
 - Complementary analysis: *evqq* and *τvqq* even *qqqq*
- We treat $\mu v q q$ and $\tau(\mu 2 v) v q q$ as signal strength
- Three signals measured simultaneously
 - $W \to cb, W \to c(s+d), W \to u(s+d)$
 - $W \rightarrow ub$ too tiny to access, fixed to SM

Event selections

- Selection criteria are optimized for statistical uncertainty for $Br(W \rightarrow cb)$
- Purity > 99.5% at eff. of 70% for $W \rightarrow qq$

	$\mu\nu W, W \rightarrow$			$ au u W, au o \mu 2 u, W o$			
	cb	ub	c(d/s)	u(d/s)	cb	c(d/s)	u(d/s)
w/o selections	11.3k	102	$6.78 \mathrm{M}$	$6.78 \mathrm{M}$	2.23k	1.18M	1.18M
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	10.6k	94	6.32M	6.32M	1.5k	834k	829k
$R_{L\mu} > 0.95$	9.23k	78	$5.52 \mathrm{M}$	5.53M	1.21k	710k	710k
$\cos(\theta_{\mathrm{L}\mu})$	9.23k	78	$5.52 \mathrm{M}$	5.53M	1.21k	710k	710k
Second isolation muon veto	9.1k	77	5.5M	$5.52 \mathrm{M}$	1.2k	709k	710k
Missing $P_T > 9$	8.92k	74	5.38M	$5.41 \mathrm{M}$	1.13k	685k	686k
multiplicity ≥ 27	8.92k	74	$5.37 \mathrm{M}$	$5.37 \mathrm{M}$	1.13k	683k	681k
$M_{\rm jets} > 50 {\rm GeV}$	8.86k	74	$5.34 \mathrm{M}$	$5.35 \mathrm{M}$	1.13k	679k	679k
$M_{\rm jets} < 95 {\rm GeV}$	7.92k	70	$4.79 \mathrm{M}$	4.79M	1.05k	616k	613k
efficiency	0.701	0.682	0.707	0.707	0.470	0.524	0.520
	(08)	(88)			(40)	(02)	(02)

	$\tau \nu W, W$ -	$\rightarrow qq, \tau \rightarrow$			
	$e2\nu$	had. + ν	au au q q	$\mu\mu qq$	others
w/o selections	2.43M	8.79M	609k	1.25M	364.9M
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	37.3k	190k	118k	790k	13.6M
$R_{\mathrm{L}\mu} > 0.95$	357	9.93k	65.4k	413k	85.1k
Second isolation muon veto	357	9.89k	64.1k	125k	57.9k
Missing P_T	349	9.59k	60.0k	47.7k	46.7k
multiplicity ≥ 27	341	9.51k	59.6k	47.2k	38.0k
$M_{\rm jets} > 50 { m GeV}$	318	9.41k	58.8k	45.7k	35.0k
$M_{\rm jets} < 95 { m GeV}$	302	8.47k	6.72k	10.7k	4.02k
efficiency	0.000125	0.000964	0.011	0.00854	$1.1 imes 10^{-5}$

Table 3. Event selections for backgrounds.

Jet flavour tagging

Boundary between b1 and b2 (0.995) which optimized for statistical error of $W \rightarrow cb$

Flavour tagging at Z-pole

$quark \setminus tag$	b_1	b_2	g_1	g_2	g_1	g_2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
c	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.000104	0.00477	0.00145	0.054	0.538	0.401

classify events into 21 categories

6 labels for a jets, and 21 combinations for di-jet.

Just an idea: Self-calibration is possible?

e.g. $W \rightarrow u(d + s)$,

3 main unknown parameters $N_{u(ds)}$, $Eff_{uds \rightarrow g_1}$, and $Eff_{uds \rightarrow g_2}$ 3 observables: green bars in the green box

Statistics: Extraction of results

• The
$$\chi^2$$
 $-2\log(L(S_a)) = \sum_{i=1}^{21} \frac{(\sum_a S_a N_i^a + bkg_i - N_i^{obs})^2}{N_i^{obs}}$

- Signal strengths for $W \to cb$ and $W \to c(ds)$ and $W \to u(ds)$
 - statistical errors: 0.026, 5.9E-4, 5.8E-4
 - Correlation coef. $\begin{pmatrix} 1 & -0.077 & 0.020 \\ \cdots & 1 & -0.46 \\ \cdots & \cdots & 1 \end{pmatrix}$
- The ratio of $\mu v q_1 q_2$ to $\tau(\mu 2 v) v q_1 q_2$ is assumed to be known
- $|V_{cb}|$
 - Relative statistical error: 1.3%
- The check of unitarity of CKM

•
$$\frac{\sum_{j=bds} |V_{cj}|^2}{\sum_{j=bds} |V_{uj}|^2} = \frac{\sum S_{cj} \operatorname{Br}(W_{cj})}{\sum S_{uj} \operatorname{Br}(W_{uj})}$$

- Statistical error: 0.1%
- Systematics, need to take care of flavour tagging.

Statistics: comparison

- $|V_{cb}|$ by $\mu\nu qq$ and $\tau(\mu 2\nu)\nu qq$
 - relative statistical uncertainty 1.3%
 - Half of the exclusive and inclusive analysis by *b*-hadron, respectively.
 - Global fit result good
 - seems there is uncounted uncertainties in the measurements
 - Comparable to V_{cb} accuracy level of 1% by the 3.6× 10⁶ $B_c \rightarrow \nu \tau$ decays from 1 Tera Z at the CEPC (arXiv:2007.08234)
 - At the FCC-ee, quick estimation by Marie-Helene Schune:
 - 1.9%/1.5%
 - aiming at 0.4% with 100 million WW pairs around threshold

Systematics

- $|V_{cb}|$ by $\mu\nu qq$ and $\tau(\mu 2\nu)\nu qq$
 - relative statical uncertainty 1.3%

$$|V_{bc}| = \sqrt{\frac{\Gamma_W R_{cb} \operatorname{Br}(W \to qq)}{\alpha_{\mathrm{QCD}} C_{cb}}} \qquad R_{bc} = \frac{\operatorname{Br}(W \to cb) S_{W \to cb}}{\sum_{\mathrm{hadronic}} \operatorname{Br}(a) S_a} \qquad c_{\mathrm{QCD}} = 1 + \sum_n c_n \alpha_s^n (M_W^2)$$

neglect the mass of quarks $C_{ij} = C$, where $C = G_F M_W^3 / (6\pi \sqrt{2})$.

δlnM

Systematics: Extreme cut on *b*-likeliness

- Extreame cut on *b*-likeliness > 0.999
 - High purity sample of $W \rightarrow cb$
 - relax the requirement of *relative* systematical error of backgrounds
 - Relative statistical error for $S_{W \rightarrow cb}$: 3.1% (optimal one: 2.6%)

Extrapolation for flavour tagging performance

- Migration matrix *M_{ij}*
 - the *i* quark tagged as label *j*.
- mimic data with: $N_{t_1t_2} = \sum_{ij} N_{ij} M_{it_1} M_{jt_2} (2 \delta_{t_1t_2})$
- Trace of the migration matrix
 - $\operatorname{Tr}(M) = M_{bb_1} + M_{bb_2} + M_{cc_1} + M_{cc_2} + M_{uds,g_1} + M_{uds,g_2}$
 - characterizing the flavour tagging performance
- Extrapolation
 - Linear mix the baseline and `unit` matrix to obtain migration matrix with other trace

Figure 8. Left: the relative statistical uncertainties $|V_{cb}|$ vs. the trace of migraion matrix. Right: statistical precision of $W \to c(d+s)$, $W \to u(d+s)$ and unitarity test vs. the trace of migraion matrix. The stars mark the position of CEPC's baseline.

VTX: Vin-B

- New design: Vin-B (Vertex in beampipe tube)
 - Most inner layer inside the beampipe tube
 - Reduce the inner and middle layers of VTX
 - Remove supports structure of VTX
 - Self-support of silicon sensitive volume
- 20% improvement for V_{cb}

Figure 9. The new design of the VXD.

Numbers summarized

<i>V_{cb}</i> relative statistical uncertainty	V _{uds} or V _{cds} relative statistical uncertainty	detector	channels	luminosity	comments
1.3%	0.03%	baseline	μνqq+ τ(μ2ν)νqq	CDR 5.6 iab	Full simulation
0.85%	0.019%	baseline	lvqq	CDR	Assume e the the same as mu. Tauon has a penalty in eff. of 80% (1)
0.71%	0.016%	baseline	μνqq+ τ(μ2ν)νqq	Snowmass 2022 20 iab	Cuts unchanged. we found optimal cuts not changed with changs of lumi. (2)
0.45%	0.010%	baseline	lvqq	Snowmass 2022	(1)+(2)
0.36%	0.0092%	Vin-B	lvqq	Snowmass 2022	Improved by 20% for Vcb and by 8% for Vuds/Vcds
2%			Inc. and exc. B decay respectively		PDG2020/PDG2022

$$V_{cds} = \sqrt{|V_{cs}|^2 + |V_{cd}|^2}$$

$$V_{uds} \text{ is similar}$$

Questions still kept in mind

- Tag efficiencies for $b \rightarrow b_1$, $c \rightarrow c_{1,2}$ for signal, possibly calibrated from data?
- How much the full hadronic WW process contribute?
 - Considering 13 million semi-hadronic, 40 million full-hadronic.
 - Unlikely surpass the semi-hadronic
 - Jet confusion?
- Analysis beyond average flavour tagging eff.?
 - E.g. data binning with Pt?