Viable Inputs for the Flavor White Paper

Lingfeng Li

May, 2023

We Need PHYSICS Inputs (w/ Plots) Based on Green Texts & Discussions

- ➢ Remainder of FCNC decay modes
- ► Inputs for the global CKM fit
- ➤Tau and low multiplicity observables
- >Charm/Strange physics
- ➢BSM from flavor physics

Remainder of FCNC decay modes

- Di-tau modes
- Di-neutrino modes (invisible)
 - × Radiative mode (e.g. $\Lambda_b \rightarrow \Lambda / pK + \gamma$)
 - × Electron modes for RK and RK*
- (systematic dominated)

Inputs for the global CKM fit CP Invariant Observables ≻ |Vub|, |Vcb|:

- ▶1) Inclusive & exclusive B->X_{c,u} lv decay rates
 ▶2) W->cb decays (see later talks)
 ▶3) Bc->τν decays
- > |Vts|, |Vtd|: from $\Delta_d \& \Delta_s$ (B0 and Bs oscillation time, reprojection?)
- ➢ |Vus|: currently 0.2% from K decays. (Ideal limit from Tera-Z: 4E-4??)

· · · · · /	ing tau measurements and OPE, no lattice QCD			
See the <u>TALK</u>	$\blacktriangleright \ \frac{R(\tau \to X_{\text{strange}} \nu)}{\left V_{us}\right ^2} = \frac{R(\tau \to X_{\text{non-strange}} \nu)}{\left V_{ud}\right ^2} - \delta R_{\tau,\text{SU3 breaking}},$	$ au o X_s u$		

Inputs for the global CKM fit The Angles

Observable/experiments	CurrentW/A	Belle II (50 /ab)	HL-LHC	FCC-ee
CKM inputs				
γ (uncert., rad)	$1.296\substack{+0.087\\-0.101}$	1.136 ± 0.026	1.136 ± 0.006	1.136 ± 0.004
$ V_{ub} $ (precision)	5.9%	2.5%	1%	1%
Mixing-related inputs				
$\sin(2\beta)$	0.691 ± 0.017	0.691 ± 0.008	0.691 ± 0.003 (stat.)	0.691 ± 0.005
ϕ_s (mrad)	-15 ± 35	n/a	-18 ± 3	-18 ± 2
$\Delta m_d \ (\mathrm{ps}^{-1})$	0.5065 ± 0.0020	Same	Same	Same
$\Delta m_s \ (\mathrm{ps}^{-1})$	17.757 ± 0.021	Same	Same	Same
$a_{\rm fs}^d(10^{-4}, \text{ precision})$	23 ± 26	-7 ± 15	-7 ± 2	-7 ± 2
$a_{\rm fs}^s(10^{-4}, \text{ precision})$	-48 ± 48	n/a	0.3 ± 3	0.3 ± 2

Inputs for the global CKM fit The Angles

- >β: b->ccs/ mixing, e.g. B-> J/ψ K, rescale FCC?
- ≽γ: B->DK, rescale FCC?
- > β_s: from Bs-> J/ψ φ, known
- A_{SL} : rescale FCC?
- \geq |Vts Vtd sin(β + β s)|: see strange physics

Tau & Low-Multiplicitv

Measurement	Current [?]	FCC [86]	Tera- Z Prelim. [88]] Comments
Lifetime [sec]	$\pm 5 \times 10^{-16}$	$\pm 1 \times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \to \ell \nu \bar{\nu})$	$\pm 4 \times 10^{-4}$	$\pm 3 \times 10^{-5}$		$0.1 \times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\text{track}})$ limited
$BR(\tau \to 3\mu)$	$<2.1\times10^{-8}$	$O(10^{-10})$	same	bkg free
$BR(\tau \to 3e)$	$<2.7\times10^{-8}$	$O(10^{-10})$		bkg free
$BR(\tau^{\pm} \to e\mu\mu)$	$<2.7\times10^{-8}$	$O(10^{-10})$		bkg free
$BR(\tau^{\pm} \to \mu ee)$	$< 1.8 \times 10^{-8}$	$O(10^{-10})$		bkg free
${ m BR}(au o \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2\times 10^{-9}$	$O(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_{\gamma})$ limited
$BR(\tau \to e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
$BR(Z \to \tau \mu)$	$< 1.2 \times 10^{-5}$	$\mathcal{O}(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}}) \& \sigma(E_{\text{beam}})$ limited
$BR(Z \to \tau e)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}}) \& \sigma(E_{\text{beam}})$ limited
$BR(Z \to \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
$BR(Z \to \pi^+\pi^-)$			$O(10^{-10})$	$\sigma(\vec{p}_{\text{track}})$ limited, good PID
$BR(Z \to \pi^+ \pi^- \pi^0)$			$\mathcal{O}(10^{-9})$	au au bkg
$BR(Z \to J/\psi \gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma + \tau\tau\gamma$ bkg
$BR(Z \to \rho \gamma)$	$<2.5\times10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

Strange Physics

One prominent example: KS $\rightarrow \mu\mu$

 $<2.1 imes10^{-10}$ Γ_{11} $\mu^+\mu^-$ *S1* SD LD $\mathscr{B}(K_S \to \mu^+ \mu^-)_{SM} \approx (4.99 \pm 0.19) \times 10^{-12}$ = $(5.18 \pm 1.50 \pm 0.02) \times 10^{-12}$

Two orders of magnitude away! Decay length ~ 3 cm. Syst. dominated @ LHCb, challenging even at future K factories.

Strange Physics

If the strange can be "tagged", $D = \frac{N_{K^0} - N_{\overline{K}^0}}{N_{K^0} + N_{\overline{K}^0}}$ is non zero, can be used to measure $N_{K^0} + N_{\overline{K}^0}$ CPV in the short distance KS-> µµ amplitude

$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{\ell=0} = \frac{\beta_\mu \tau_S}{16\pi m_K} \left| \frac{G_F}{\sqrt{2}} \frac{2\alpha_{em}}{\pi \sin^2 \theta_W} m_K m_\mu \times Y(x_t) \times f_K \times V_{ts} V_{td} \sin \theta_{ct} \right|^2$$
$$\approx 1.64 \cdot 10^{-13} \times \left| \frac{V_{ts} V_{td} \sin \theta_{ct}}{(A^2 \lambda^5 \bar{\eta})_{\text{best fit}}} \right|^2,$$

BSM Physics: Light States from Flavor

From tau decays: see Anson's talk later
 From B decays: Ongoing
 New ideas?