
STCF离线数据处理软件

Teng LI

on behalf of the STCF offline software team

2023-06-10

Overview of STCF Offline Software System

 The Offline Software of Super Tau-Charm Facility (OSCAR) is designed for
detector design, MC data production and physics analysis

 OSCAR is partially based on Key4hep
 Reuse some components. Extend others for STCF

 Core software are developed for common
functionalities
 Event loop control (sequently or concurrently)

 Detector data and event data management

 Common tools for data analysis

 Other common services

 Some applications are migrated from BESIII
2W.H. Huang et al 2023 JINST 18 P03004

https://iopscience.iop.org/article/10.1088/1748-0221/18/03/P03004/pdf

Development Environment

 Supported Operating System: SLC 7 and CentOS 7

 Programming Language: C++ 14, Python 3.8

 Job configuration：Python and Json

 Software management ：CMake

 Version Control Tool：Gitlab
 URL: http://202.141.163.203:8009/oscar

 Fork-merge-request, issue tracker, wiki, CI/CD

 Users manual: http://202.141.163.203:8008/oscar_manual

3

Underlying Framework: SNiPER

 Lightweighted, precisely aimed at small-scaled HEP experiments

 Adopted by JUNO (neutrino), LHAASO (cosmic ray), nEXO (neutrinoless double beta
decay) and HERD (dark matter)
 Provide basic functionalities of event loop control, application interface, job configuration, logging etc.

 Advantages of SNiPER
 Lightweighted, efficient, highly extendable. Flexible event loop control. Flexible to be integrated with

other software, e. g. podio, ROOT, ...

 C++/Python hybrid programing, highly configurable. Efficient multithreading.

4reference: J. H. Zou et al J. Phys.: Conf. Ser. 664 (2015) 072053
 J. H. Zou et al EPJ Web Conf. 214 (2019) 05026

Parallelism in MT-SNiPER

 SNiPER provides simple interfaces for building multithreaded applications

 Based on Intel TBB

 SNiPER Muster (Multiple SNiPER Task Scheduler) works as a thread pool/scheduler

 Data I/O is binded to dedicated I/O thread for flexibility

 A Global Store is developed to support multithreaded event data management

 Application code is mostly consistent for serially and parallelly execution

5

GlobalStore

Event Data Model Based on Podio

 Event Data Model (EDM) lies at the heart of OSCAR

 Define the structure of event data in memory and in data files

 Implement relationship between data objects (hit-track-MC particle)

 Handle schema evolution

 EDM is defined based on podio (Key4hep, adopted by FCC
CEPC, ILC, ...)

 Generate C++ code based on YAML definition

 Support both C++ and Python

 Good multithreading support

 Powerful and flexible relationshop between data objects

 Support multiple data file format

6https://github.com/AIDASoft/podio

F. Gaede, etc. , CHEP2019

https://github.com/AIDASoft/podio

Event Data Model Based on Podio

 Due to the specific requirements of STCF, EDM4hep is not directly used

 Design EDM classes based on Podio and reuse some EDM4hep classes

7

 Re-use MCParticle and ReconstructedParticle
in EDM4hep as the core index

 Design EDM classes specificly for STCF
simulation and reconstruction (for the PID
system, and contains more information for
detector optimization and physics analysis)

 MCParticle and ReconstructedParticle are
correlated based on track matching algorithm,
bridging MC and reconstructed data

Event Data Management

 Event data management system manages event data in memory, provides
interfaces for user applications and handles data I/O

 Extend SNiPER DM system based on Podio
 PodioDataSvc: memory management

 PodioInputSvc: data input

 PodioOutputSvc: data output

 DataHandle: interface

 Event data and user application are completely
decoupled

8

W.H. Huang et al 2023 JINST 18 P03004

https://iopscience.iop.org/article/10.1088/1748-0221/18/03/P03004/pdf

Parallelized Event Data Management

9

 To enable parallelized data processing, a GlobalStore is developed based on Podio
 Re-implement podio::EventStore to cache multiple events (each within one data slot)

 Use several condition lock to enable safety exchanging data between threads

 I/O services are binded to dedicated I/O threads, to ensure performance and flexible
post- or pre-processing

 Based on parallelized DM
system, detector simulation
and reconstruction are developed

 Users could switch serial/
parallel by just changing
job configuration

Geometry Management System

 Detector description in OSCAR is based on DD4hep
 Single source of detector information for detector description, simulation

reconstruction and event display

 DDG4 for delivering detector geometry to Geant4
 DDRec for delivering detector geometry to reconstruction algorithms
 DDXMLSvc: the unified interface to DD4hep, including DDG4 and DDRec

10

Flexible combinations of different
versions of detector design, and
combinations of sub-systems

H. Li et al 2021 JINST 16 T04004

https://iopscience.iop.org/article/10.1088/1748-0221/16/04/T04004

Detector Geometry Description

 The Full STCF Detector is described with DD4hep

 Each sub-detector is implemented with a single compact file

 The version number is used for different design options

 Optimizing the detector geometry according to changes of the detector design

11

ITK

MUD

Geometry and Event Display

 A common geometry and event display system is being developed
 User interface and 3D display based on WebGL

 3D engine and graphic libbrary based on Three.JS

 Read geometry information from detector description based DD4hep (XML)

 Event data read from Podio

12

XML
DD4hep

CPP

podio

Detector Simulation and Reconstruction

 Full chain of detector simulation has been built
 Flexible configuration of generator, geometry, user actions

 Reconstruction chain

13

BgHits

SimHits

mixing tracking TrackExt

PID

ECAL
Rec

MUD Rec

Event
Assembler RecData

Parallelized Detector Simulation

14

 Based on the MT-SNiPER and parallelized DM system, parallelized detector
simulation applications are developed

 Basic performance tests show promising scalability

Global PID Software

 To expoilt the detector sufficiently, a global PID software that takes all
information from sub-detectors is developed based on ML
 Based on data-driven method, extract features from many correlated variables and

perform PID for charged particles (e/μ/π/K/P)

 Based on XGBoost C API, integrated into OSCAR

15

K+/K- efficiencies

PID Software Based on CNN

 Construct pixel-map according to hit-time and -position of Cherenkov photons, as input
of convolutional neural network for PID

 Applied to RICH and DTOF. The output PID likelihood could be further fed into global PID
software

16

convolution

k π

Automated Software Validation

 A software validation toolkit is developed, to support building software validation on
different levels

 Unit test, integrated test, software performance profiling and physics result validation

 Integrated with Gitlab Action system for automated validation

 Trigger validation jobs on different levels on schedule/commits

 Same system is being adopted by CEPC and Key4hep as well

17

GitlabPull
Request

Commit
Code Central

Database

Build
installation CVMFS

Docker Performance
Testing

DIRAC
(shared)

Kubernetes
(dedicated)Web

Portal

Gitlab
Workflow

Build
Servers

Test
Servers

READY

TODO

Summary

 We introduced the basic design and functionalities of STCF offline software
system (OSCAR), developed since a few years ago

 Developed partially based on Key4hep. Many components are extended specificlly
for STCF, but are also re-usable by other experiments

 Based on the core components, many STCF applications are (being) developed

 Some algorithms ported from BESIII

 Detector simulation, reconstruction algorithms, event display, analysis toolkit such as
particle ID, Vertex/KineticFit, RDataframe based framework etc.

 Now support preliminary physics analysis with MC data

 We have been continuously improving OSCAR based on new technologies

 Physics performance of reconstruction algorithm has been continuously improved

 Many applications are being developed based on concurrent/heterogeneous
computing, machine learning and quantum computing (see talks in the following
sessions) 18

