

Simulation and Reconstruction of the Electromagnetic Calorimeter for Super Tau-Charm Facility

Yong Song

University of Science and Technology of China

On behalf of the STCF calorimeter working group

June 10, 2023

Research Background

• STCF ECAL

- ECAL Design
- Performance Studies of ECAL
 - Reconstruction of Energy and Position
 - Time Simulation and Reconstruction
 - Background Simulation

• Summary

Research Background

Super Tau-Charm Facility (STCF) is the next generation electron-positron collider experiment after BEPCII/BESIII
 ➢ High luminosity: beyond 0.5 × 10³⁵ cm⁻² ⋅ s⁻¹@ 4 GeV
 ➢ Wide energy region: center-of-mass energy range of 2~7 GeV

Research Background

Requirements for Electromagnetic Calorimeter (ECAL)

Fast response

- Challenge of high Luminosity High event rate (400 kHz)
 Extremely high background
- High precision
 - Energy resolution
 Better than 2.5% @1 GeV
 - Position resolution

Better than 6 mm @1 GeV

Time resolution

Better than 300 ps @1 GeV

Energy distribution for photons

ECAL Design

- Total absorption calorimeter
 - ➢ Barrel: 51 × 132 = 6732
 - ➤ Endcap: 3 × (85 + 102 + 136) = 969

Crystal arrangement diagram

Visualized by DD4Hep

Pure CsI (pCsI) crystal + APD

- Pure CsI (pCsI) crystal
 - ➢ Fast decay time
 - Good radiation hardness
 - Low light yield
- Avalanche photodiode (APD)
 - Short wavelength type
 - > Large area ($10 \times 10 \ mm^2 \times 4$)

Performance Studies Based on OSCAR

OSCAR: Offline Software of Super Tau-Charm Facility

OSCAR Framework Composition

Photon Shower Visualization

Reconstruction Algorithm

A preliminary reconstruction algorithm of ECAL is developed

Energy reconstruction of 1GeV γ

The energy spectrum is fitted by Crystal Ball function, and the energy resolution is defined by $\sigma_E = \frac{FWHM}{2.355}$.

 π^0 Cluster (two photons)

Energy Reconstruction

- 1. "Dead Material"
- 2. Light Yield (L.Y. = 100 p.e./MeV)
- 3. Light Collection Non-uniformity
- 4. Secondary Particles Hit APD
- 5. Electronics Noise

Good energy linearity is maintained in the energy range of 25MeV~3.5GeV

The energy resolution is 2.15% @ 1 GeV ,which meets the performance requirement.

Position Reconstruction

Barycenter method with logarithmic weight

$$X_c = \sum_j^N W_j(E_j) \cdot X_j / \sum_j^N W_j(E_j)$$

Where:

$$W_j(E_j) = \max\{0, a + \ln(E_j / \sum_{j=1}^{N} E_j)\}$$

The position resolution is 4.9 mm @ 1 GeV ,which meets the performance requirement.

•Reconstruction of π^0

$$m_{\pi 0} = \sqrt{2E_1E_2(1-\cos\alpha)}$$

Time Simulation and Reconstruction

•Time Simulation

Based on Geant4 Optical Simulation

Schematic diagram of the time simulation method

Time Simulation and Reconstruction

•Time Simulation

Based on Geant4 Optical Simulation

Transmission of fluorescent photons in crystal

The time distribution of fluorescent photons being collected

Output waveform template

Time Simulation and Reconstruction

•Time Reconstruction

Based on waveform fitting

13

Background Simulation

Challenges of high background

- Luminosity-related Background
 - Radiative BhaBha Scattering (RBB) 1.
 - **Two Photon Process** 2

Variation of the background counting rate with polar angle

Counting rate reaches the order of MHz

- Single-beam related Background
 - **Thouschek Effect**
 - 2. **Coulomb Scattering**
 - **Bremsstrahlung** 3.

Momentum distribution of background particles Most background particles concentrate in the low momentum region 14

Background Simulation

Challenges of high background

- Background waveform is superimposed on the signal waveform
- > The impact of the background is devastating.

The amplitude of signal is distorted

The energy spectra of 1 GeV photons before and after introducing background

Waveform Fitting Method

Multi-template fitting

- The waveform template is obtained by convoluting the pure CsI fluorescence signal with the electronics impulse response function.
- > The fit minimizes the χ^2 defined as:

$$\chi^2 = \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)^T C^{-1} \left(\sum_{j=1}^N A_j \overrightarrow{p_j} - \overrightarrow{S}\right)$$

Where:

N is the number of templates;

vector \vec{S} comprise the readout samples;

vector $\overrightarrow{p_j}$ is the waveform template;

 A_j are the amplitudes, which are obtained by the fit; **C** is the noise covariance matrix.

An example of the multi-template fitting result.

- The green line is the fitting result of the data, which is the sum of total templates.
- □ The red line is the template represents the signal.
- The blue line represents the background, which is the sum of the remaining templates.

Waveform Fitting Method

• The effect of waveform fitting method

With the help of the waveform fitting method, the energy resolution is greatly improved, which meets the requirements of STCF ECAL.

•High precision ECAL with fast response characteristics

- > High luminosity
- good energy and position resolution
- > good time resolution

•The performance of ECAL was studied based on OSCAR

- The Geant4 simulation results shows that the design of ECAL could meet the performance requirements.
- Based on optical simulation, the time performance of ECAL was simulated and reconstructed.
- The waveform fitting method is helpful in solving the problem of high background level.

Back Up

ECAL Design —— Sensitive Unit

•Pure Csl crystal + APD photo-device

- Pure CsI (pCsI) crystal
 - Fast decay time
 - Good radiation hardness
 - Low light yield
- ◆ Crystal Size:
 - > Total radiation length $15 X_0$ (28 cm)
 - > End face size front end: $\sim 5 \times 5 \ cm^2$ back end: $\sim 6.5 \times 6.5 \ cm^2$
- Avalanche photodiode (APD)
 - Short wavelength type
 - > Large area $(10 \times 10 \ mm^2 \times 4)$

ECAL pCsI crystal unit

Crystal	Pure Csl
Density (g/cm ³)	4.51
Melting Point (°C)	621
Radiation Length (cm)	1.86
Moliere Radius (cm)	3.57
Refractive index	1.95
Hygroscopicity	Slight
Luminescence (nm)	310
Decay time (ns)	30 6
Light yield (%)	3.6 1.1
Dose rate dependent	No
D(LY)/dT (%/°C)	-1.4
Experiment	KTeV
	Mu2e

Splitting Algorithm

$$E_k = \sum_{i=1}^n a_{ik} E_i$$

Splitting algorithms used by BES III and Panda:

$$a_{ik} = \frac{E_k \times \exp(c \times \frac{r_{ik}}{R_M})}{\sum_{j=1}^m E_j \times \exp(c \times \frac{r_{ij}}{R_M})} ,$$

where R_M is the Moliere radius, c is a constant, r_{ij} is the distance from the center of the i-th crystal to the location of the j-th shower center, and m is the number of showers, E_j is the energy of j-th seed.

•Reconstruction of π^0

1-Template Fitting

• Template shape function:
$$f(t) = A \times f(t - \tau) + p$$

• $\chi^2 = \sum_{i,j} (y_i - A \cdot f(t_i - \tau) - p) \cdot S_{ij}^{-1} \cdot (y_j - A \cdot f(t_j - \tau) - p)$
• Apply $\frac{\partial \chi^2}{\partial A} = 0, \frac{\partial \chi^2}{\partial \tau} = 0, \frac{\partial \chi^2}{\partial p} = 0$:

$$\begin{cases} \sum_{i,j} f_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \\ \sum_{i,j} f'_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \\ \sum_{i,j} 1 \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \end{cases}$$

$$\begin{pmatrix} F_k \cdot S^{-1} \cdot F_k^T F_k \cdot S^{-1} \cdot F_k'^T F_k \cdot S^{-1} \cdot I \\ F'_k \cdot S^{-1} \cdot F_k^T F_k \cdot S^{-1} \cdot F'_k^T F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k^T F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k^T F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k^T F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T I \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F'_k F_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot F'_k F_k \cdot S^{-1} \cdot I \end{pmatrix}$$

23

Nonnegative Least Square (NNLS)

Convention:

- b: A real pulse with m points
- x: fitted amplitudes for n pulses
- A: the ith column of A represents the template for the ith pulse and of course each template has m points.
- P: passive set currently not fixed amps
- R: active set currently fixed amplitudes

$\mathbf{Algorithm} \; \mathit{fnnls}:$

Input: $\mathbf{A} \in \mathbf{R}^{m \times n}$, $\mathbf{b} \in \mathbf{R}^m$ Output: $\mathbf{x}^* \ge 0$ such that $\mathbf{x}^* = \arg \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$. Initialization: $P = \emptyset, R = \{1, 2, \cdots, n\}, \mathbf{x} = \mathbf{0}, \mathbf{w} = \mathbf{A}^T \mathbf{b} - (\mathbf{A}^T \mathbf{A}) \mathbf{x}$ repeat

- 1. Proceed if $R \neq \emptyset \land [\max_{i \in R}(w_i) > tolerance]$
- 2. $j = \arg \max_{i \in R} (w_i)$
- 3. Include the index j in P and remove it from R
- 4. $\mathbf{s}^P = [(\mathbf{A}^T \mathbf{A})^P]^{-1} (\mathbf{A}^T \mathbf{b})^P$ 4.1. Proceed if $\min(\mathbf{s}^P) \le 0$ 4.2. $\alpha = -\min_{i \in P} [x_i/(x_i - s_i)]$ 4.3. $\mathbf{x} := \mathbf{x} + \alpha(\mathbf{s} - \mathbf{x})$ 4.4. Update R and P 4.5. $\mathbf{s}^P = [(\mathbf{A}^T \mathbf{A})^P]^{-1} (\mathbf{A}^T \mathbf{b})^P$ 4.6. $\mathbf{s}^R = \mathbf{0}$ 5. $\mathbf{x} = \mathbf{s}$ 6. $\mathbf{w} = \mathbf{A}^T (\mathbf{b} - \mathbf{A}\mathbf{x})$

Performance Simulation

Material budget in front of the ECAL

- The performance is affected by the interaction of photons with materials in front of the ECAL.
- The dominant interaction process for photons in the energy range of interest is gamma conversion.

Materials in front of the ECAL in units of a radiation length X_0

 γ conversion probability in front of ECAL

Performance Simulation

Impact of materials in front of ECAL

A full STCF detector simulation study was carried out, and the simulation results are compared with ECAL only simulation results.

The energy resolution varies with γ energy.

have little effect on the energy resolutionhave great effect on reconstruction efficiency.

The reconstruction efficiency varies with γ energy.

The reconstruction efficiency is defined by $\frac{N_{rec}}{N_{MC}}$, N_{rec} satisfy: $E_{peak} - 4\sigma_E < E_{rec} < E_{peak} + 2\sigma_E$.