BESIII和PANDA上的电磁量 能器软件

赵光 (<u>zhaog@ihep.ac.cn</u>), 刘春秀 (代表BESIII和PANDA量能器软件工作组)

2023年粒子物理实验计算软件与技术研讨会 6月10日,山东大学

- 量能器简介
- BESIII和PANDA的量能器软件:模拟、重建和刻度
- 总结

为什么需要量能器?

• 量能器是理想的测量高动量粒子的探测器

- 分辨随能量的增大而减小: $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$
- (径迹探测器: $\frac{\sigma_p}{p} \propto \frac{p}{L^2}$)
- 其它的优势:
 - 簇射的深度∝ ln(E): 尺寸可控
 - 可以覆盖全立体角: 高探测效率
 - 信号成形快: 可以用于触发
 - · · ·

电磁量能器探测原理

- •入射粒子(能量 E)与量能器物质发生相互作用,产生电磁簇射
 - 主要是电子的韧致辐射和光子的对产生的级联过程
- ・电磁簇射在量能器中发展完全,中间产生的次级粒子的能量沉积在量能器中,通过后端的 光子探测器收集信号 S(∝ E)
- 通过对电磁簇射的测量,从而测量光子和电子的能量和位置信息及穿过量能器的其它带电 粒子的沉积能量

电磁簇射的特征

- 纵向发展分布
 - $t_{max} \propto \ln(E_0/E_c)$
 - $L(95\%) = t_{max} + 0.08Z + 9.6X_0$

a 6 GeV electron in lead

- 横向发展分布
 - 主要由簇射中电子的库仑散射决定
 - Moliere半径: $R_M \approx \frac{21MeV}{E_C} X_0$
 - $R(95\%) = 2R_M$

全吸收型电磁量能器晶体的性质

晶体性质决定了电磁簇射的特征

晶体	NaI(Tl)	CsI(Tl)	BGO	PbWO ₄	
比重(g/m³)	3.67	4.51	7.13	8.28	
辐射长度(cm)	2.59	1.86	1.12	0.89	
莫里哀半径(cm)	4.8	3.8	2, 3	2.0	
dE/dx(Mev/cm)	4.8	5.6	9.2	13.0	
核作用长度(cm)	41.4	37	21.8	18	
折射系数(480 nm)	1.85	1.79	2.15	2.16	
发射峰波长(nm)	410	560	480	420~560	
相对光输出	100	45(PMT) 140(PD)	15	0.6 at RT 2.5 at -25°C	
发光温度系数(%/℃)	≈ 0	0.3	-1.6	-1.9	2
发光衰减时间(ns)	230	1000	300	10~50	
朝解性	强	微	无	无	
参考价格(\$/cm³)	2	2	7	2.5	

- BESIII: Csl (TI)
 更高的光产额
- PANDA: PWO-II
 - 更紧凑的簇射
 - 更快的信号 (桶部最高 事例率100 kHz)

- •簇射本征统计涨落: $\propto \frac{1}{\sqrt{E}}$
- •光子/电子在光子探测器中的统计涨落: $\propto \frac{1}{\sqrt{E}}$
- •电子学噪声: $\propto \frac{1}{F}$
- ・能量泄露、刻度: ≈ constant
- 总体能量分辨: • $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$

电磁量能器软件

实现量能器的性能要求,离不开高 质量的离线软件

模拟/数字化:

 与真实实验尽可能一致的几何和探测器/电子 学响应

重建

- 高效的簇团寻找和劈裂算法
- 高效的簇射能量和位置重建算法

刻度

- 击中级:准确的电子学读出与真实粒子能量 之间的关系
- 簇射级: 基于物理事例的能量修正

BESIII量能器软件

BESIII电磁量能器

- Based on CsI(TI) crystal
 - Crystal sizes :
 - Length 28cm (15.1X₀),
 - typical front and rear sizes 5.2×5.2-6.4×6.4 cm²
 - Barrel:
 - 120×44=5280 crystals
 - a small tilt of 1.5° in ϕ -directions and 1.5° to 3° in θ -directions
 - Endcaps:
 - 2×(96,96,80,80,64,64) =960 crystals
- Used to measure energy and position for electrons and photons
- Designed performance
 - Energy range: 20MeV 2GeV
 - Energy resolution: 2.5% @1GeV/c
 - Position resolution: 0.6 cm @ 1GeV/c
 - Provide neutral energy trigger
 - Good e/ π identification above 200MeV/c
 - Equivalent electronics noise for each channel is less than 200KeV

Geometry description

- Csl crystal, casing, PD, front-end electronics, cable, water pipe, and support system
- Digitization
 - Waveform generation w/ amplifier response
 - Feature extraction: extract ADC/TDC from waveform

- Clustering
 - A contiguous area of crystals with energy deposition that is larg than a threshold
 - Local maximum as the seed of shower

• Cluster splitting

- Need to split if there are more than one seed in a cluster
- Calculate weight from the i-th shower to a crystal
 - $w_i = \frac{E_{i,exp}}{\Sigma_j E_{j,exp}}$

• where
$$E_{i,exp} = E_{i,seed} \times (a_1 \exp\left(-\frac{b_1 |x_i - x_c|}{R_M}\right) + a_2 \exp(-\frac{b_2 |x_i - x_c|}{R_M}))$$

- Update the E_{shower} and X_{shower}
- Perform the algorithm recursively

Typical cluster for 1GeV photon

* BABAR Collaboration, B. Aubert *et al.*, Nucl. Instr. and Methods A **479**, 1 (2002)

簇射的能量和位置

- Shower energy
 - E3x3, E5x5, Eall: Sum over crystal energies around the seed
- Shower position
 - Center-of-gravity method

•
$$x_c = \frac{\Sigma_j w_j x_j}{\Sigma_j w_j}$$

- Logarithmic weighting function
 - $w_j = Max(0, a_0 + \ln(E_j) \ln(E_{tot}))$
- Position correction
 - Correct bias of reconstructed position by Bhabha events

G, F, c factors should/must be determined by the Calibration procedure, aiming for the most accurate energy measurement for electrons & photons.

- Detection unit uniformity
- Pre-shower and leakage
- Light yield non-uniformity
- ...

单晶体能量刻度

• Use Bhabha events to calibrate the crystal-level constants c_i

 $E_e(\theta,\phi)$: electron or positron energy from kinematic f (E_e,θ,ϕ): the fraction of energy deposited in EMC E_{exp}^k : expected energy, $\sigma(\theta,\phi)$: energy resolution i - crystal index k - shower index g_i - calibration constant

- Step 1: Shower energy correction using simulated single γ events
 - $E_{5\times 5} = E_{5\times 5}/F$
- Step 2: Shower energy correction using π^0 samples
 - $E_{5\times 5} = E_{5\times 5}/G$
 - Perform χ^2 fit

Thus in the *i*-th E_{low} and in the *j*-th E_{high} , the corrected π^0 mass can be expressed as:

$$m_{\gamma\gamma}^{cor} = \sqrt{2E_{low} \exp(-\alpha_i)E_{high} \exp(-\alpha_j)(1-\cos\theta_{\gamma\gamma})}$$
$$= \sqrt{2E_{low}E_{high}(1-\cos\theta_{\gamma\gamma})} \cdot \exp(-\alpha_i/2-\alpha_j/2)$$
$$= m_{\gamma\gamma}^{raw} \cdot \exp(-\alpha_i/2-\alpha_j/2),$$

 $m_{\gamma\gamma}^{raw}$ is the invariant mass of the photon pair calculated with shower energy corrected using MC correction function

The shift (logarithmical) of π^0 mass to MC expected value in the i-th and j-th bin :

 $C_{ij} = \alpha_i/2 + \alpha_j/2 \pm \sigma_{ij}$ or σ_{ij} is its statistical error

Define a
$$\chi^2$$
 function:

$$\chi^2 = \sum_i \sum_j \frac{(\alpha_i/2 + \alpha_j/2 - C_{ij})^2}{\sigma_{ij}^2}.$$
Minimizing it yields:

$$\sum_i \sum_j \frac{\alpha_i/2 + \alpha_j/2 - C_{ij}}{\sigma_{ij}^2} (\delta_{ik} + \delta_{jk}) = 0,$$

$$\delta_{jk} = \begin{cases} 1, & \text{if } j = k \\ 0, & \text{if } j \neq k. \end{cases} k = 1, 2, ..., n, \text{ here n=13} \end{cases}$$
In matrix form
$$\sum_{m=1}^n A_{mk} \alpha_m = B_k, \qquad \alpha_k = \sum_{i=1}^n A_{ki}^{-1} B_i,$$

$$A_{mk} = \sum_i \sum_j \frac{(\delta_{im} + \delta_{jm})(\delta_{ik} + \delta_{jk})}{2\sigma_{ij}^2}, \qquad \Delta \alpha_k = \sqrt{2A_{kk}^{-1}}.$$

$$B_k = \sum_i \sum_j \frac{(\delta_{ik} + \delta_{jk})C_{ij}}{\sigma_{ij}^2}.$$

$$C_{ij} = \ln m_{\gamma\gamma}^{\text{data}} - \ln m_{\gamma\gamma}^{\text{exp}}, \qquad \sigma_{ij}^2(C_{ij}) = \sigma_{ij}^2(\ln m_{\gamma\gamma}^{\text{exp}}) + \sigma_{ij}^2(\ln m_{\gamma\gamma}^{\text{exp}})$$

0.11

0.12

0.13

0.14

0.16 m2gg

0.15

1 GeV光子的能量和位置分辨

Design objective:

Energy resolution: $2.3\%/\sqrt{E(\text{GeV})} \oplus 1\%$ (2.5%@1GeV)

Position resolution: $\sigma_{X,Y} \leq 6mm/\sqrt{E(\text{GeV})}$

PANDA量能器软件

PANDA实验

- PANDA: Anti-Proton Annihilations at Darmstadt
- Anti-proton beam between 1.5 GeV/c to 15 GeV/c shoots on fixed target
- \sqrt{s} : 2.3 GeV ~ 5.5 GeV
- Luminosity: 2x10³² cm⁻² s⁻¹
- Complementary physics programs to BESIII
 - $par{p}$ can produce particles with any quantum number

PANDA电磁量能器

Target Spectrometer:

- Barrel and two endcaps
- 16,000 crystals, improved PbWO4
- $X_0 = 0.89$ cm, $R_M = 2.00$ cm, x4 light yield at -25°C
- For barrel EMC, 11360 crystals, the average lateral size of crystal is 21.3mm
- Forward Spectrometer:
 - Shashlik type sampling calorimeter
- Designed energy and spatial resolution for photons
 - $\leq 1\% \oplus \frac{\leq 2\%}{\sqrt{E/GeV}}$
 - $\leq 0.5^{\circ}$ (backward), $\leq 0.3^{\circ}$ (barrel), $\leq 0.1^{\circ}$ (forward)

Target Spectrometer

Forward Spectrometer

桶部几何的构建

✓ 根据最新硬件设计,详细构建 了桶部量能器的晶体和非灵敏 物质。

与Mainz合作完成 后端盖数字化

<u>数字化</u>:信号产生 + 特征提取

<u>信号产生:</u> 真实波型的产生 噪声的模拟 基于FFT频谱分析

- 重点优化了软件速度 (复杂度O(n) -> O(1))
- 实现了4个读出的模拟

特征提取:

- 低通滤波器对波形进行光滑
- 通过FPGA算法
 - 提取波形的时间和幅度

10

5

Voltage [a. u.]

2.5 0.0

-2.5

• 以及分离交叠信号

Feature Extraction (特征提取)

与Stockholm U合作 完成前向数字化

考虑了<mark>探测器的颗粒度</mark>后,改进了簇 团劈裂算法中的簇射横向发展公式: $E_{target} = E_{seed} \times e^{-2.5r/R_M}$

Calibration algorithm

- No Bhabha events for calibration
- Develop the algorithm using π^0 events
 - Single π^0 events
 - $p\bar{p} \rightarrow \pi^0 \pi^0 \pi^0$ events

Test with single γ events

* An correction of energy leakage is included in the calibration

•开发了完整的BESIII量能器离线软件,探测器性能优于设计指标:

- 能量分辨: 2.4% @ 1 GeV γ (桶部)
- 位置分辨: 5.55 mm @ 1GeV e⁻(桶部)
- •对PANDA量能器进行了多项重要的软件改进,包括:
 - 重新构建了桶部几何
 - 基于最新电子学设计的数字化算法的开发
 - 簇团劈裂算法的改进
 - 刻度框架和算法的开发

PANDA Schedule

Current Status

- Construction of many Phase 1 systems has started
- Integration and infrastructure planning progressing
- Delays in several parts due to delayed funding or contracting
- Covid-19 needs to be accounted still

Installation periods according to present plans

- Installation period 1: solenoid, dipole, supports etc. in parallel with installation of technical building infrastructure
- Installation period 2: all other systems after building completed.

Boundary conditions for plan revision

- Completion of PANDA hall 2 years later than initially planned
- Start of installation period 1 on June 6 2024
- Mitigation: testing and pre-assembly of parts at other sites, storage

Ready for beam end 2026