

Recap on track reconstruction in HEP

Xiaocong Ai (Zhengzhou University)

Workshop of Computing Software and Technologies in HEP Experiments, Qingdao, June 10, 2023

Tracking what for?

- Track finding: associate discrete measurements (a.k.a. hits) to individual tracks
- Track fitting: estimate properties of tracks at target (reference) position
 - Position, momentum (with magnetic field), charge, possibly dE/dx (and velocity)

Xiaocong Ai Recap on track reconstruction in HEP

Tracking is crucial to success of physics programs

 Tracking is about vertex reconstruction, jet reconstruction and flavor tagging, pileup mitigation, particle identification...

Figure from Eur. Phys. J. C 76, 581

Xiaocong Ai Recap on track reconstruction in HEP

Workshop of Computing Software and Technologies in HEP Experiments, Qingdao June 10, 2023

Tracking drives the precision of detector alignment

Track-based alignment: Simultaneous optimization of local track parameters and global alignment parameters:

$$\chi^{2} = \sum_{i} \chi_{i}^{2} = \sum_{i} [\vec{m_{i}} - \vec{h_{i}}(\vec{x_{i}}(\vec{\alpha}), \vec{\alpha})]^{T} V^{-1} [\vec{m_{i}} - \vec{h_{i}}(\vec{x_{i}}(\vec{\alpha}), \vec{\alpha})]$$

Tracking detectors

- Tracking is possible due to interaction of charged tracks with detector material
 - Energy loss by ionization (and bremsstrahlung for electron)
- Ionization detector:
 - Continuous: e.g. gaseous detectors (drift chamber, Time Projection Chamber)
 - Discrete: e.g. silicon planar detector

Xiaocong Ai Recap on track reconstruction in HEP

Workshop of Computing Software and Technologies in HEP Experiments, Qingdao June 10, 2023

n-Si

SiO₂

A view of a track

- What we want to know:
 - How far is a track from a reference point, or more accurately, a reference line (e.g. the beam line or drift wire), usually described by impact track parameters d0, z0 (or dz)?
 - What is the **intersection** of a track with a planar detector?
 - The momenta and track direction at a particular point
 - The **charge** of the track
 - Possibly the **time** of the track upon reaching a point

Track parameterization

e.g. ATLAS parameterization: (lx, ly, ϕ , θ , q/p)

lx, ly: track position, either d0, z0 or lx, ly on a real planar detector (the same parameterization with different reference surfaces) ϕ , θ : track direction track track q: charge p: momentum x-y plane x-y plane p Corresponding parameterization at BESIII, BELLE II From E. Moyse $(d_0, \phi, \kappa, d_1, tan\lambda)$ or $(d_0, \phi_0, \omega, d_1, tan\lambda)$

Xiaocong Ai Recap on track reconstruction in HEP

Track propagation

- Track propagation is solved numerically using fourth-order **Runge-Kutta-Nyström** method in (**inhomogeneous**) magnetic field
- Propagation of both the track parameters vector and their covariance taking into account **material effects** (both energy loss and multiple scattering)

Track finding

- Global approach: e.g. Hough transform, Graph Neural Networks
- Local approach: e.g. Cellular automaton, Combinatorial Kalman Filter (CKF)

Figure from Sara Pohl's thesis

Xiaocong Ai Recap on track reconstruction in HEP

Figures from ACTS readthedocs

Track fitting

- Least-square fitter:
 - Difficulty with material effects, but can resolve drift distance left/right ambiguity
- Kalman-filter (being used more):
 - More elegant handling of material effects, more extension-friendly

Xiaocong Ai Recap on track reconstruction in HEP

Track selection

- Reconstructed raw tracks are often passed to further filtering (might involves scoring)
 - Tracks can be scored based on track parameters, fitting quality, number of (shared) hits...
 - Track with poor qualities are removed

e.g. Ranking Neural Network for separation of good and bad tracks by at least a margin

$$loss_{part} = \frac{1}{N_{tracks}} \sum_{max(0, x - y + margin)}^{tracks}$$

See slides of Corentin Allaire at CHEP2023

x: track score; y: good track score; margin = 0.05

Tracking performance

Tracking efficiency and rate of fake/duplicate tracks

- Fake track: sometimes, the hits left on detector by several particles can be accidentally grouped to make a track
- Duplicate track: two reconstructed tracks can be largely overlapped

Examples of tracking performance of STCF using ACTS: arXiv:2301.04306

Xiaocong Ai Recap on track reconstruction in HEP

Workshop of Computing Software and Technologies in HEP Experiments, Qingdao June 10, 2023

Tracking performance

Tracking resolution

- Characterizing the accuracy of the reconstructed track parameters
- Relevant with the intrinsic resolution, layout and material budget of detectors

Examples of tracking performance of STCF using ACTS: arXiv:2301.04306

Towards the future HEP tracking

- Experiments need high-performance tracking software to not compromise physics goals
 - Preserved efficiency, precision and speed with increased luminosity (e.g. $\langle \mu \rangle = 200$ at HL-LHC, up to 7k particles per event)
 - Capability of handling particles with complicated experimental signatures
 - Easy to extend for new detector technologies
 - Supports parallelization (even with heterogeneous computing)
 - Ease of maintenance

e.g. ATLAS at HL-LHC

How about a common tracking software?

- Tracking is a necessity at particle and nuclear physics experiments
- Tracking experience can be shared with different experiments
- Common software can save manpower from duplicated development and facilitate the long-term maintenance
 - e.g. great success of GEANT4, ROOT, DD4hep...!

We already started the effort >5 years ago: A Common Tracking Software (ACTS) project!

➔ See <u>A. Salzburger's talk</u> right away

Summary

- Tracking is pivotal to reconstruction, identification and calibration of high-level physics objects
- Resolving individual tracks is a non-trivial task
 - Material effects, bending by magnetic field, possible huge amount of combinatorics...
- Tracking is concerned with efficiency, resolution and CPU needs
- Tracking will become even more challenging in the future
- We need a performant, extendable, maintainable, and even detector agnostic tracking software to achieve our physics goals
 - A common tracking software, i.e. ACTS, keeps growing and maturing (A. Salzburger's talk right away)
 - Stay tuned for talks of J. Zhang (BESIII), H. Zhou (STCF) and M. Liu (CEPC) for experiment-specific tracking strategies

Thank you