

Track Reconstruction in BESIII Multilayer Drift Chamber

Jin Zhang¹, Yao Zhang²

1. Sun yat-sen University

2. Institute of high energy physics

On behalf of the BESIII offline software group

2023年粒子物理实验计算软件与技术研讨会 10th June 2023

Beijing Spectrometer(BESIII) Experiment

- BEPCII is a double-ring accelerator with a designed peak luminosity of 10³³ cm^{-2s-1}
- BESIII covers the areas including the charm physics, charmonium physics, tau physics, QCD studies and light hadron spectroscopy.
- Both the accelerator and the detector worked remarkably well, the world largest data samples of J/ψ have been collected.

Util May 9th 2023, 500 papers have been submitted!

Track Reconstruction in MDC(i)

Tracker, also Vertex detector (MDC Inner Tracker)
 Critical for precise measurement of momentum and vertices

MDC

Track Reconstruction in MDC(ii)

- 43 layers, Axial layer : 2D / Stereo layer : 3D
- 11 superlayers
- Inner Chamber : 8 stereo layers
- |cosθ|<0.93

- ➤ Typical Helix model **P** ≡ (d_0 , ϕ_0 , κ , z_0 , ta n λ)
- $\geq 2D 3D$, local method in superlayer is the basis for Track Finding
- Inner Chamber: crutial for transverse and longitudinal impact parameters (d0 and z0)
 4

Track Reconstruction in MDC(iii)

Track Finding

- Local && Global track method in 2D Track Finding
- 2D(circle) track parameters is key input for stereo-wire calculation
- All candidate hits are fitted to 3D(helix) tracks

Track Fitting: RungeKutta + Kalman

Template matching

- Particularly suitable for MDC geometry
- Division of chambers into cells provides a natural basis to define "template"
- Superlayer structure chamber && Symmetrical geometry along phi

Pros : Advantageous for high transverse momentum(pt) tracks

Straight : high efficiency for matching Long : More track segments

- Cons : Azimuth coverage angle of segment groups does not meet the requirements for low pt track segment finding
 - - rer Extending template to rer 14 wire group

Helix fitting

6

Segment Finding using Conformal Transform

- Similar segment finding method with PAT, but for the higher curvature tracks in superlayers
 - Considering measurements: using drift • circle information
 - 8-hit pattern -> Common tangents of drift circles : using Conformal Transform

Conformal Transform $X = \frac{2x}{x^2 + y^2}, Y = \frac{2y}{x^2 + y^2}$ 35 0.08 30 y 0.06 20 y(cm) **0.04** $x_{c}X+y_{c}Y=1$ 15 0.02 Q'(X',Y' $(\mathbf{x}_{c}, \mathbf{y}_{c})$ O(IP 0.02 Х х Ο 5 -0.1 -0.08-0.06-0.04-0.02 10 -25 -20 -15 -10 -5 0 0 0.02 Circle track -> straight line X(cm⁻¹)

Drift circles -> new circles tangent to the straight line

High failure rate for curling tracks with multiple hits in the same layer

Conformal Transform in MDC

Road method For Curling Tracks

- Segment finding: for continuous neighbor hits in superlayers
- Road: from one segment -> circle fitting -> pick up close hits
- No drift circle information

Not feasible for multi-turn tracks

Low Transverse Momentum Track

Geometrical problem : pt < 120MeV</p>

Curling, multiturn curves in XY plane

Passing less superlayers

Leaving multiturn curves

Severe impact on Inner Tracker - Hits overlapping

Track Finding

Difficult to tell hits in 1st

Tracking performance closely related to dip angle ($\cos\theta$)

- Large $|\cos\theta|$: quickly flies out along z
 - Short tracks with insufficient hits
 - Only Inner stereo hits for z information
- Small |cosθ|: curling in MDC Multiturn tracks

Low Transverse Momentum Tracks

➢ Material effect

- The momentum resolution and the impact parameter resolution are dominated by multiple scattering
- Energy loss ~ $1/\beta^2$, leading to effective deflections of particle

Legendre Transform For Low Momentum Track(i)

Hough/Legendre transform in MDC

- Global method relies not on segment on superlayers
- Considering drift distance information
- More hits in the initial step

steps

- I. Conformal transform
- II. Legendre Transform
- III. Vote lines in histogram
- IV. Peak finding method

One drift circle->two curve lines on Hough space

$$\rho = X \cos \alpha + Y \sin \alpha + r, (upper \ half \ circle)$$
$$\rho = X \cos \alpha + Y \sin \alpha - r, (lower \ half \ circle)$$

Legendre Transform For Low Momentum Track(ii)

Deviation causing by energy loss

Many optimizations for multiturn tracks in detail

Track Fitting in BESIII

- Candidate tracks from Track Finding algorithms as input
- Two fitting algorithms : Runge Kutta -> Kalman Filter

- BESIII reconstruction software have been validated, providing reliable data for BESIII physics
- Stability and long term maintenance relies on lots of work in data quality check

Performance validation for new Release

Amounts of histogram checking before new version releases

Slides from Xiaobin Ji

Performance validation for new Release

When reconstruction upgrades, validations in different physics channels

Performance validation for new Release

Track Reconstruction Performance

EFFCIENCY

a) 要求径迹的顶点: $|v_r| < 1cm, |v_z| < 10cm$

c) 对于带电径迹, 要做带电粒子鉴别 (PID)

b) 要求径迹的角度: |cosθ| < 0.93

*Efficiency – Reconstruction efficiency, not comparison definition to MC Track Track selection and event selection

1) 径迹级别

2) 事例级别

- **a)** $Mass_{p\pi} > 1.15 GeV/c^2$
 - b) 带电径迹至少三条
 - c) 对于非"missing track",有且只有一条径迹
- d0 cut ~ -10% z0 cut ~ -10%
- The loss of efficiency is not the loss of the entire track, in most cases the track parameters are not well reconstructed and then lost

Hit efficiency/Spatial resolution vs noise level

Rec hit efficiency = number of times used in track fit / number of times with tracks pass

Impact parameters resolution dominated by Inner Chamber

Slides from Linghui Wu

Low Pt tracks lost at large dip angle

Noise

Manually checking 100 samples

	ratio	
Hit overlap	17%	(1)
Noise	18%	(2)
Insufficient hits	32%	(3)
Bad d0/z0	33%	(4)

- (1)(2)(3) difficult to salvage
- (4) room to improve

Challenges, Potentials, new techniques

- Challenges in some tough conditions
 - Low momentum optimizations
 - Multi-turn : hits overlapping clone tracks, bad quality tracks
 - Obvious material effects uncertainties in track
 - Large dip angle track with fewer hits
 - Very difficult only with IDC
 - Long vertices track reconstruction

Challenges, Potentials, new techniques

- Non gaussian errors in track fitting
 - Non gaussian errors in track fitting
 - Electron tracks Bremsstrahlung
 - Multiple scattering double gaussian
 - Energy loss Landau distribution
- Robust fitting
 - Some Extended Kalman filter: Noise/outlies rejection

Challenges, Potentials, new techniques

- Machine learning must be the future trend in track reconstruction
- There is a baseline reconstruction software to reconstruct the data, how to apply machine learning in MDC track reconstruction is an interesting issue

Machine Learning In MDC Tracking

• Noise rejection with Neural network

• Machine learning tracking :Multiturn tracks identifying

Slides supported by Yao Zhang

Machine Learning In MDC Tracking

Simultaneous track finding and track fitting

- PointNet model on BESIII (Main Drift Chamber data)
 - Input data: Hits(<u>wirePos_x</u>, <u>wirePos_y</u>, <u>rawDriftTime</u>)
 - Output:
 - 1. track index prediction for each hit (clustering)
 - 2. track parameters for each predicted track (fitting)
 - Model:

Slides from Zhibin Yang

Talk: https://indico.ihep.ac.cn/event/19620/contributions/135247/ 📰 Jun 11, 2023, 3:10 PM

Machine Learning In MDC Tracking

Clustering of Tracks Based on DBSCAN

- Original MC data sample a)
 - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
 - π⁺, π⁻ : Pt (0.2GeV 1.4GeV)
- Remove noise via GNN b)
- Transform to Conformal plane c)

• $X = \frac{2x}{x^2 + y^2} \quad Y = \frac{2y}{x^2 + y^2}$

Circle passing the origin transform into a straight line

- Transform to ' α ' parameter plane d)
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as $\cos \alpha$ and $\sin \alpha$
- DBSCAN clustering in ' α ' parameter plane e)
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track

Slides from Xiaogian Jia

Talk: https://indico.ihep.ac.cn/event/19620/contributions/135136/

Summary

- BESIII Track reconstruction software have been validated with the collision data taken over years, reliable and high performant, especially at high momentum region
- There is room for progress in complex situations, and these underlying issues require the deep understanding of our detector, environment, and the interactions between particles and matter