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What I1s Vertex Fitting and Kinematic Fitting

* The mathematic process of improving the measurements according
to the physics laws in the interaction and decay of the particles.

* For example: In the decays, the final particles should come from
the common decay point (vertex fitting), the momentum of the
final states equals to initial state (kinematic fitting).

* Physical requirements are provided through constraints in the form
of an equation: each track for 2 constraints (vertex fitting), four-
momentum conversation for 4 constraints (kinematic fitting).



Algorithm



Least-squares fit

* The constraints are expressed as 2 contribution, a function of
the parameters, denoted by the vector x

* The solution to the fit is the value of x that minimizes the total y?
v" Lagrange multiplier method

v" Kalman filter method



Method of least squares

input measurements model: ‘prediction’
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Least-squares-estimator: value of x for which x? is minimal ——
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Matrix notation

vector of residuals

O

) = m—h@)" v (m - h()

measurement covariance matrix.
often diagonal




Linear least squares estimator

e consider a linear model

h(x) = ho + Hx

e |east squares condition:

dx’ Txr—1 -

—— = —2H' V7 (m—ho— Hx) = 0 v

dx m
e solution:
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$ = (HTV'H)" HTV™ (m — h)




Linear least squares estimator

* closerinspection:

& = (H'V'H)" HTV~'(m — hy)

M-dim vector 1 d?x? 1 dx?
2 dx? |,_, 2dx |,
MxM symmetric matrix M-dim vector

var(2) = C = (H'V*H)™"




Non-linear models: Newton-Raphson

1.

2.

3.

expand around initial solution

h(x) = h(xo) + H(x — xo) H =

compute a new value for x

& = xo+ (HTV'H)™" HTV ' (m — h(w))
H,—/ N —~ 7

1d%* Ldx*

2 dx2 2 dz

o o

use x-hat as new expansion point and iterate until Ax? is small
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v¢ and degree of freedom

fil@) Xi
0.5 §

N 2 0.4+
T hz rue
X2 — Z (m (mt )) 0.3+

1=0 O 0.2+

e consider chi-square for x = xtrue

0.1

* if model is correct, then each entry in sum 0

> oo o o

has zero mean and unit variance 0 1 2 3 4 5 6

 sum is distributed according to “chi2 with N degrees-of-freedom”
e expectation valueis N

e chi-square for least squares estimate x = x-hat is smaller
* for M fit parameters, expectation value is ndof=N-M
* chi2/ndof often used to select good tracks, good vertices etc



Kalman filter method (progressive fit)

Filtering

>
“virtual” measurement

m, V,, mgV,

state vector
of prediction

n n n n v
Xln’ Cln in’ C2n Xk-l 5 Ck—l Xk R Ck &1, Cll
state vector of smoother

Smoothing
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Kalman filter

consider splitting the chi-square in two parts

x> = (my1— ha(z))" Vi (my — ha(x)) + (M2 — ha(z))" V' (M2 — ha(z))

suppose that we have already found a solution by minimizing the first part:

C, = (H{V,'Hy)™

xo + C1H| V' (my — hy(x0))

L1

can we reuse this when computing the minimum for the full chi-square?
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Kalman filter

* solution can be written in many ways, but if the dimension of m, is small,
a particularly efficient form is (“Kalman gain-matrix formalism”)

Lr = I —|— K(mz—hz(ﬂ}l))
with

“Kalman gain matrix”

K = C,H, (Vo + H,C,H,)™*

e if m has small dimension, then we only invert small matrices!
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Covariance matrix In the Kalman filter

* there exist different expressions for the covariance matrix

fast, but unstable

—_ (1 — KHQ) Cl

stable but slow

(1-— KH,) C, (1 - KH,)" + KV,K”*

C
C
C

(1 — 2KH2) Cl —|— K (Vg —l— chleT) KT stable and fast

e expressions differ in computation speed and computation accuracy

* be careful which one you pick!
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Current Status and Limits



Current: Leaf by Leaf 7

v" In high-energy physics experiments decay reactions that proceed

via intermediate metastable states are usually reconstructed by
following a bottom-up approach. Interaction point

B~ J/U(ut ) KY(n"n")

v" One starts by extracting the parameters of those decay vertices from i

100 F - ) sruie P'D(}I 1112‘155 '

. - - r . fit width: 20.1 [MeV
which the reconstructed final state particles emerge and uses the ; o e 29[_7 [ALW
- . - - . — S0r 4
intermediate ‘composite’ particles for the reconstruction of %

tream d =
upstream decays. ~ 60

e X
g 40
8’ i
v" Disadvantage: constraints that are upstream of a decay vertex do 20
not contribute to the knowledge of the parameters of the vertex. 0: o

400 450 500 550 600
KY mass [MeV]
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Other examples

B — D*"(DY(K 7n")nt)m™

I I' . ;‘,x}v)(‘;:tcld 'fr(;ul‘ P'D(I; ' 1 ] ‘_
[ widthgg : 0.6 [MeV] TreeFit : ]
,; 1200 widthgg : 1.1 [MeV] KFIT .
2 1000 _: widthgg : 1.1 [MeV] no fit : _
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T2 143 144 145 146 147 148
Am = (mD*+ — mDO) [1\[(‘\/]

Not only Kinematics fitting and vertex fitting are

separated, but also the process with continuous decay

vertices are separated.
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The update of Lambda could not impact the
proton and pion.
Improve the precision of hyperon parameter

measurements.
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Global fit



Decay Tree Fitter

Fits the whole decay tree at once. Vertices, known masses, measured tracks & neutrals and
beam/target measurement (4C) are included as constraints. The common approach is the 2 fit with

Lagrange multipliers.

->Very large parameter space and large matrices have to be inverted!

Solution: Kalman Filter approach
v" Calculation of %2 is linearized
v" Each constraint to the fit enters as one separate, scalar term

v Measurements are constraints and are treated similar to, e.g. four-momentum conservations
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Constraints

>
ll

\

Tracks

/ (P — 1)/ aq \

atanz(py09px0)
aq/p,
zZ— lpz/pt

pz/pt /

( x+ Op, \

Photons

In principle, O can be added to the photon parameter list
and extracted from the fit. Since this parameter is not very
interesting, it is preferable to eliminate it.

(xclus - x)py - (yclus o y)px
r/(x) = (Xclus — X)P; — (Zelus — Z)Py

Eaus — /P2 + P} + 12
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Fit Parameters

3

(3) Primary vertex
(3) Secondary vertices
(3)
(4)

3
4

Final state momenta

Composite's four-momenta

Constraints

Internal four-momentum
conservations

()
(3)
(4) Initial four-momentum
(4)

(1) Mass constraints

From Ralf Kliemt @ PANDA
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Fit Parameters

(3)
(3)
(3) Final state momenta
(4)

4

Primary vertex

Secondary vertices

Composite's four-momenta

Constraints

Tracks (helix parameters)
Clusters
Initial four-momentum

Internal four-momentum
conservations

(1) Mass constraints

Example

P(28) — Jhp wha~
Lo
23 Parameters:
12 4 Final State Particles
8 2 Composites
3 Primary vertex
32 Constraints:
20 4 Helices

8 2 P4-Conservations

4 Beam-Target

— 9 Degrees of Freedom
Beam: 4 plus Vertex: 2n —3 =5

From Ralf Kliemt @ PANDA
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Figen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical
solvers, and related algorithms.

Treefit::Eigen Treefit::Eigen 0.47+0.2

Treefit:: CLHEP Treefit:: CLHEP

Bt - DK 7nt)mt |

Execution time [ms/candidate] Execution time [ms/candidate]

() (b)

Eigen doesn't have any dependencies other than the C++ standard library.
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Existing Decay Tree Fitter

* BaBar have a Tree Fitter, written by W. Hulsbergen.
* LHCb, PANDA and Belle Il have similar Tree Fitter.
* Belle Il code i1s shared (Github)

H belle2 [ basf2 | Public

<> Code 19 Pullrequests (@ Security |~ Insights
Available online at www.sciencedirect.com NUCLEAR

. INSTRUMENTS
SCIENOE@DIRECT & METHODS

G0 Y e ¥ main v  basf2 [ analysis / VertexFitting / TreeFitter /
ELSEVIER Nuclear Instruments and Methods in Physics Research A 552 (2005) 566—575 %
www.elsevier.com/locate/nima

Sato Yo add the numeric limit to the subtraction of matrices ..

Decay chain fitting with a Kalman filter

Wouter D. Hulsbergen™

University of Maryland, College Park, MD 20742, USA .
 of Mary g include
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summary

* Kalman filter method has been implemented in vertex fitting
and kinematic fitting.

* Leaf by Leaf fit method could deal with most of the vertex and
kinematic problems.

* Global fit is useful in cascade decay, especially long-life
particles.

* Eigen and Kalman filter could save the Global fit costs.



