

Muon/Pion Identification Based on Machine Learning Algorithm at BESIII

CONTENTS

INTRODUCTION

- \triangleright Particle identification (PID) is one of the most important and commonly used tools for the physics analysis in collider physics experiments.
- \triangleright For BESIII experiment, traditional methods like the maximum likelihood method are difficult to improve due to the intrinsic correlations between input variables.
	- Especially for very challenging problem: muon/pion separation Great room for

improvement at certain regions

INTRODUCTION

- \triangleright In recent decades, The data-driven machine learning (ML) has provided a powerful toolbox.
	- ML based techniques have been rapidly developed and have shown successful applications in HEP experiments.
	- ML have developed rapidly and achieved outstanding results in the field of particle identification. (Hot topic)
	- One of the obvious advantages of applying ML to PID is its capability of combing many correlated variables to solve the most difficult problems for traditional methods
	- Previous studies show that the gradient boosting decision tree (typically BDT) has superior performance
- \triangleright Targeting at the muon/pion identification problem at the BESIII experiment, we have developed a new PID algorithm based on the BDT algorithm.
	- Further improving the performance of traditional PID algorithms and exploring its physical potential

METHODOLOGY

In order to fully explore the PID performance of the detector. Using advanced BDT **(**XGBoost**)**, develop a novel muon/pion PID algorithm.**(**Challenging**)**

- \triangleright Based on a data-driven approach, BDT is used as a key technical approach.
- \triangleright Selected hyper-parameters:
	-
	- n_estimators: 300

Configuration **02** Systematic errors

- Ø Systematic error**:**
	- $\Delta \varepsilon =$ ε (Data) – ε (MC) $\frac{\mu}{\varepsilon(MC)}$ (ε): PID efficiency)
- \triangleright Through detailed cross-validation to evaluate deviations :
https://www.depth: 8
	- Different decay processes
	- MC/data

DATA SAMPLE\& FEATURE SELECTION

DATA SAMPLE

Based on the substantial amount of high-quality Monte Carlo simulation (MC)/real data samples from BESIII, relying on its mature offline software system (BOSS). Train sample Train sample Cross-validation sample

- Single muon/pion MC samples
- \triangleright High purity and well distribution (Pre-processing)
	- Make sure the distribution of p and $\cos\theta$ is flattened to avoid bias

FEATURE SELECTION

- \triangleright To extract effective features from a large amount of interrelated sub-detectors information.
- Ø First model trained with all 108 features.
	- Contain MDC, dE/dX, TOF, EMC, MUC information
	- Based on XGBoost (as baseline)
- Features are then selected according to feature importance.
- Eliminate redundant features to reduce training time
- Eliminate features that have large MC/Data deviation to suppress systematical error
- Ø Eliminate strongly-correlated features, 37 features are kept

Comparison with traditional PID algorithm

Background efficiency

\triangleright Background efficiency:

The number of background misidentified as signal The total number of background

Cross validation between different decay processes

- To check generalization ability
- To estimate the deviations different decay channels

 $2023/6/10$ and 13

Cross validation between MC and Data

MC/data:

 $J/\psi \rightarrow \pi^+\pi^-\pi^0 \rightarrow \pi^+\pi^-\gamma\gamma$ (P = 99.37%)

– To estimate systematical error

 $J/\psi \rightarrow \gamma \mu^+ \mu^-$ (P = 97.97%)

 $2023/6/10$ and 14

BOSS Integration

To make the algorithm available to analyzers, a BOSS package is developed

- For easy-to-use, the package is integrated with BESIII Event Data Model
- Based on C-API of XGBoost, and provided similar interface with PID package
- Pre-trained model is integrated, and made

transparent to users


```
#include "DeepParticleID/DeepParticleID.h"
StatusCode AnalysisAlg::execute() {
 \frac{1}{2}DeepParticleID* Deeppid = new DeepParticleID(XGBoost);
 Deeppid->calculate(*itTrk);
 float prob mu = Deeppid \rightarrow prob(0);float prob pi = Deeppid \rightarrow prob(1);if (prob mu > prob pi) {
     \frac{1}{2}1/. . . . . . . .
```


 $2023/6/10$ and 15 and 15

GlobalPID Algorithms Based on Machine Learning at STCF

GlobalPID Algorithm

- The Super Tau Charm Facility (STCF), with a luminosity greater than 0.5×10^{35} cm⁻² s⁻¹ and a center-of-mass energy range of 2-7 GeV, is an important option for China's future accelerator-based particle physics large-scale scientific facility.
- The development and research of the Global Particle Identification (GlobalPID) software algorithm is crucial for achieving the future physics objectives of the STCF experiment.
	- PID software is an important component of The STCF offline software system (OSCAR).
- Building on the experience gained from particle identification work in the early stages of BESIII, the STCF experiment will utilize advanced ML techniques to innovate and develop the GlobalPID algorithm.

Physics Objectives

physics

precision

• Searching for new exotic hadronic states

• Studying flavor physics and CP violation

• Searching for new physics beyond the

standard model at the forefront of high

- By integrating all sub-detector information
- To fully exploit the PID performance of the detector
- Needed to facilitate the progress of physics analysis work

超级陶粲装置(STCF)

GlobalPID Algorithm

• Based on OSCAR simulation and reconstruction results, Tracker/dEdx/RICH/DTOF/ECAL/MUD information have been collected. (Full list of variables please see backup slides)

超级陶粲装置(STCF)

- 50000 tracks for each type (e \pm , $\mu\pm$, $\pi\pm$, K \pm , p \pm)
- MC single charged track using ParticleGun
- $p\in (0.2, 2.4)$ Gev/c, $\theta \in (20^{\circ}, 160^{\circ})$, phi = 0°
- \bullet ML model(based on XGBoost) is trained and optimized to discriminate (e, μ , π , k, P)
- l Preliminary results have been obtained. The model and GlobalPID algorithm have been integrated into OSCAR software and is available for analysis and research.

SUMMARY

 ∇A muon/pion identification algorithm based on machine learning model (XGBoost) is developed based on the high quality data samples at BESIII and has been integrated into the BOSS.

 $\check{\mathsf{v}}$ Performance analysis shows XGBoost model provides obviously higher discrimination power than traditional methods.

 $\check{}$ Detailed cross-validation was conducted and an evaluation method for the systematic error

of the machine learning model was provided, which can be used by BESIII physics analysts.

- Evaluate deviations between different decay processes
- Evaluate deviations between MC/data
- \checkmark Developed a ML-based GlobalPID algorithm for future STCF experiments.
	- Algorithm framework is established
	- Integrated into OSCAR software
	- Global PID algorithm has preliminary results

23

e π^{\pm} *selection*: $J/\psi \rightarrow \pi^+ \pi^- \pi^0 \rightarrow \pi^+ \pi^- \gamma \gamma$

◆ Good charge Track Selection:

- $|V_z|$ < 10.0 cm
- $|R_{xy}| < 1.0$ cm
- $|cos\theta| < 0.93$
- N $_{good \, charge} = 2$, total charge=0

◆ Good photon Selection:

- E_{γ}>25MeV for barrel EMC($|cos\theta|$ <0.8) or
- E_{γ}>50MeV for endcap (0.86<|cos θ |<0.92)
- Time spent in emc: 0<t<700ns
- θ _y, charge > = 10(degree)
- $N_{\gamma}=2$

◆ 4C Kinematic fit:

- |mγγ-0.135|<0.015 GeV
- $\chi^2(\gamma \gamma \pi \pi) < \chi^2(\gamma \gamma K K)$, $\chi^2(\gamma \gamma \pi \pi) < 100$
- < 0.8.And keep another track information. \blacklozenge Only one track is used as PID, which needs to meet $prob(\pi)$ >prob(k) 、 prob(π)>prob(p) and E/P

24

 μ^{\pm} *selection:* $e^{+} e^{-} \rightarrow J/\psi \rightarrow \gamma \mu^{+} \mu^{-}$

- **Charge track selection:**
- $N_{charge}=2$
- Good photon selection:
- Time spent in emc: 0<t<700ns
- E_{γ} > 25MeV for barrel EMC($|cos\theta|$ < 0.8) or
- $E\gamma$ > 50MeV for endcap (0.86 < $|cos\theta|$ < 0.92)
- \checkmark N_y>0
- ◆ randomly selected one of the charged traces and compared its momentum **with another traces:**
- \checkmark If the momentum of the track is within (1.5, 1.8) GeV, further selection cuts good pho
include: include:
- $|V_z|$ < 10.0 cm
- $|R_{xy}|$ < 1.0 cm
- $|cos\theta|$ < 0.8
- The energy deposited in the EMC is within (0.05, 0.27) GeV
- The depth in MUC of the track is greater than 40 cm
- prob(mu)>0.001 && prob(mu)>prob(k)&& prob(mu)>prob(e)
- \checkmark If the momentum of the track is less than 1.5 GeV, further selection cuts include:
- $|V_z|$ < 10.0 cm
- $|R_{xy}| < 1.0$ cm
- $|cos\theta| < 0.93$
- Energy deposited in the EMC within (0.03, 0.22) GeV
- prob(mu)>0.001 && prob(mu)>prob(k)&& prob(mu)>prob(e)
- \checkmark The angle between the photon and the missing momentum is less than 10°
- ü 4C Kinematic fit:
- The combination with the smallest χ 2 is chosen as the best combination(select good photon)
- ◆ Saving that track information without any cut conditions
- ◆ Repeat the three and four steps for the other track in this event

2023/6/10

l *37 features*

- **MDC:** 'p_mdc', 'theta_mdc', 'phi_mdc', 'charge'
- **dE/dX:** 'chimu_dedx','chipi_dedx', 'probPH_dedx',
- **TOF B:** 'tof b', 'path b'
- **TOF_E:** 'tof e', 'path e', 'ph e'
- **TOF:** ' chimu_tof ', 'chipi_tof '
- Gkklhcbchic2Zero_1.root • **EMC:** 'nhits emc','z emc', 'theta emc', 'e emc', 'eseed emc', 'e33 emc', 'e55 emc', 'secondm emc', 'latm_emc','a20m_emc', 'a42m_emc'
- **MUC:** 'brLast rpc', 'ecLast rpc', 'nhits rpc', 'nlayers rpc', 'depth rpc', 'chi2 rpc', 'y_rpc', 'z_rpc', 'px_rpc', 'pz_rpc','distance_rpc', 'deltaPhi_rpc'

26

 ψ (2s) $\rightarrow \pi^+\pi^-J/\psi \rightarrow \pi^+\pi^- \mu^+\mu^-$

Ø Good charge Track Selection:

 $|V_z|$ < 10.0 cm

 $|R_{xy}|$ < 1.0 cm

 $|cos\theta|$ < 0.93

charge every good charge track $= \pm 1$

Ngood charge track =4, total charge=0

- \triangleright Candidates for π :
- \checkmark The momentum of the charged track is required to less than 1 GeV
- \triangleright Candidates for μ :
- \checkmark The momentum of the charged track is required to greater than 1 GeV
- \checkmark The energy deposited in the EMC of the charged track is less than 0.6 GeV
- \triangleright There must be two charged muon candidates, which one is plus and one is minus
- \triangleright There must be two charged pion candidates, which one is plus and one is minus
- \triangleright 4C Kinematic fit:

Four momentum constrained kinematic fit is perfromed and the χ 2 is less than 200.

2023/6/10

 P (GeV/c)

