

Muon/Pion Identification Based on Machine Learning Algorithm at BESIII

CONTENTS

INTRODUCTION

- Particle identification (PID) is one of the most important and commonly used tools for the physics analysis in collider physics experiments.
- For BESIII experiment, traditional methods like the maximum likelihood method are difficult to improve due to the intrinsic correlations between input variables.
 - Especially for very challenging problem: muon/pion separation

Great room for improvement at certain regions

INTRODUCTION

- > In recent decades, The data-driven machine learning (ML) has provided a powerful toolbox.
 - ML based techniques have been rapidly developed and have shown successful applications in HEP experiments .
 - ML have developed rapidly and achieved outstanding results in the field of particle identification. (Hot topic)
 - One of the obvious advantages of applying ML to PID is its capability of combing many correlated variables to solve the most difficult problems for traditional methods
 - Previous studies show that the gradient boosting decision tree (typically BDT) has superior performance
- > Targeting at the muon/pion identification problem at the BESIII experiment, we have developed a new PID algorithm based on the BDT algorithm.
 - Further improving the performance of traditional PID algorithms and exploring its physical potential

METHODOLOGY

☑ In order to fully explore the PID performance of the detector. Using advanced BDT (XGBoost), develop a novel muon/pion PID algorithm. (Challenging)

11 Configuration

- Based on a data-driven approach, BDT is used as a key technical approach.
- > Selected hyper-parameters:
 - max_depth: 8
 - n_estimators: 300

02 Systematic errors

- > Systematic error :
 - $\Delta \varepsilon = \frac{\varepsilon(\mathsf{D}ata) \varepsilon(MC)}{\varepsilon(MC)} \quad (\varepsilon : \mathsf{PID efficiency})$
- Through detailed cross-validation to evaluate deviations :
 - Different decay processes
 - MC/data

DATA SAMPLE & FEATURE SELECTION

DATA SAMPLE

Based on the substantial amount of high-quality Monte Carlo simulation (MC)/real data samples from BESIII, relying on its mature offline software system (BOSS). Train sample Cross-validation sample

- Single muon/pion MC samples
- High purity and well distribution (Pre-processing)
 - Make sure the distribution of p and $\cos \theta$ is flattened to avoid bias

FEATURE SELECTION

- > To extract effective features from a large amount of interrelated sub-detectors information.
- First model trained with all 108 features.
 - Contain MDC, dE/dX, TOF, EMC, MUC information
 - Based on XGBoost (as baseline)
- Features are then selected according to feature importance.
- Eliminate redundant features to reduce training time
- Eliminate features that have large MC/Data deviation to suppress systematical error
- Eliminate strongly-correlated features, 37 features are kept

Comparison with traditional PID algorithm

12

Cross validation between different decay processes

- To check generalization ability
- To estimate the deviations different decay channels

13

Cross validation between MC and Data

MC/data:

J/
$$\psi$$
 → π⁺π⁻ π⁰ → π⁺π⁻γγ (P = 99.37%)

14

- To estimate systematical error

J/ $\psi \to \gamma \mu^+ \mu^-$ (P = 97.97%)

BOSS Integration

To make the algorithm available to analyzers, a BOSS package is developed

- For easy-to-use, the package is integrated with BESIII Event Data Model
- Based on C-API of XGBoost, and provided similar interface with PID package
- Pre-trained model is integrated, and made

GlobalPID Algorithms Based on Machine Learning at STCF

GlobalPID Algorithm

- The Super Tau Charm Facility (STCF), with a luminosity greater than 0.5×10^{35} cm⁻² s⁻¹ and a center-of-mass energy range of 2-7 GeV, is an important option for China's future accelerator-based particle physics large-scale scientific facility.
- The development and research of the Global Particle Identification (GlobalPID) software algorithm is crucial for achieving the future physics objectives of the STCF experiment.
 - PID software is an important component of The STCF offline software system (OSCAR).
- Building on the experience gained from particle identification work in the early stages of BESIII, the STCF experiment will utilize advanced ML techniques to innovate and develop the GlobalPID algorithm.
 - By integrating all sub-detector information
 - To fully exploit the PID performance of the detector
 - Needed to facilitate the progress of physics analysis work

Physics Objectives

- Searching for new exotic hadronic states
- Studying flavor physics and CP violation physics
- Searching for new physics beyond the standard model at the forefront of high precision

超级陶粲装置(STCF)

GlobalPID Algorithm

 Based on OSCAR simulation and reconstruction results, Tracker/dEdx/RICH/DTOF/ECAL/MUD information have been collected. (Full list of variables please see backup slides)

超级陶粲装置(STCF)

- 50000 tracks for each type ($e\pm$, $\mu\pm$, $\pi\pm$, $K\pm$, $p\pm$)
- MC single charged track using ParticleGun
- p∈(0.2, 2.4)Gev/c, θ∈(20°, 160°), phi = 0°
- ML model(based on XGBoost) is trained and optimized to discriminate (e, μ , π , k, P)
- Preliminary results have been obtained. The model and GlobalPID algorithm have been integrated into OSCAR software and is available for analysis and research.

SUMMARY

 \checkmark A muon/pion identification algorithm based on machine learning model (XGBoost) is developed based on the high quality data samples at BESIII and has been integrated into the BOSS.

✓ Performance analysis shows XGBoost model provides obviously higher discrimination power than traditional methods.

 \checkmark Detailed cross-validation was conducted and an evaluation method for the systematic error

of the machine learning model was provided, which can be used by BESIII physics analysts.

- Evaluate deviations between different decay processes
- Evaluate deviations between MC/data
- ✓ Developed a ML-based GlobalPID algorithm for future STCF experiments.
 - Algorithm framework is established
 - Integrated into OSCAR software
 - Global PID algorithm has preliminary results

23

• π^{\pm} selection: $J/\psi \to \pi^{+} \pi^{-} \pi^{0} \to \pi^{+} \pi^{-} \gamma \gamma$

◆ Good charge Track Selection:

- |V_z| < 10.0 cm
- $|R_{xy}| < 1.0 \text{ cm}$
- $|\cos \theta| < 0.93$
- N good charge=2, total charge=0

◆ Good photon Selection:

- $E_{\gamma}>25MeV$ for barrel EMC($|\cos\theta|<0.8$) or
- $E_{\gamma} > 50 MeV$ for endcap (0.86 < $|\cos \theta| < 0.92$)
- Time spent in emc: 0<t<700ns
- $\theta\gamma$, charge > = 10(degree)
- Nγ=2

◆ 4C Kinematic fit:

- |mγγ-0.135|<0.015 GeV
- $\chi^2(\gamma\gamma\pi\pi) < \chi^2(\gamma\gamma KK), \ \chi^2(\gamma\gamma\pi\pi) < 100$
- Only one track is used as PID, which needs to meet prob(π)>prob(k) $\$ prob(π)>prob(p) and E/P < 0.8.And keep another track information.

 μ^{\pm} selection: $e^+ e^- \rightarrow J/\psi \rightarrow \gamma \mu^+ \mu^-$

- Charge track selection:
- ✓ N_{charge}=2
- Good photon selection:
- Time spent in emc: 0<t<700ns
- \checkmark E_Y>25MeV for barrel EMC($|\cos\theta| < 0.8$) or
- \checkmark E_{γ}>50MeV for endcap (0.86<|cos θ |<0.92)
- ✓ Nγ>0
- ◆ randomly selected one of the charged traces and compared its momentum ✓ with another traces:
- \checkmark If the momentum of the track is within (1.5, 1.8) GeV, further selection cuts include:
- |V_z| < 10.0 cm
- |R_{xy}| < 1.0 cm
- $|\cos\theta| < 0.8$
- The energy deposited in the EMC is within (0.05, 0.27) GeV
- The depth in MUC of the track is greater than 40 cm
- prob(mu)>0.001 && prob(mu)>prob(k)&& prob(mu)>prob(e)

- $\checkmark~$ If the momentum of the track is less than 1.5 GeV, further selection cuts include:
- |V_z| < 10.0 cm
- $|R_{xy}| < 1.0 \text{ cm}$
- |cosθ| < 0.93
- Energy deposited in the EMC within (0.03, 0.22) GeV
- prob(mu)>0.001 && prob(mu)>prob(k)&& prob(mu)>prob(e)
- $\checkmark~$ The angle between the photon and the missing momentum is less than 10° .
- ✓ 4C Kinematic fit:
- The combination with the smallest χ 2 is chosen as the best combination(select good photon)
- Saving that track information without any cut conditions
- Repeat the three and four steps for the other track in this event

• 37 features

- **MDC:** 'p_mdc', 'theta_mdc', 'phi_mdc', 'charge'
- **dE/dX:** 'chimu_dedx', 'chipi_dedx', 'probPH_dedx',
- **TOF_B:** 'tof_b', 'path_b'
- **TOF_E:** 'tof_e', 'path_e', 'ph_e'
- **TOF:** ' chimu_tof ', 'chipi_tof '
- EMC: 'nhits_emc','z_emc', 'theta_emc', 'e_emc', 'eseed_emc', 'e33_emc', 'e55_emc', 'secondm_emc', 'latm_emc','a20m_emc', 'a42m_emc'
- MUC: 'brLast_rpc', 'ecLast_rpc', 'nhits_rpc', 'nlayers_rpc', 'depth_rpc', 'chi2_rpc', 'y_rpc', 'z_rpc', 'px_rpc', 'pz_rpc', 'distance_rpc', 'deltaPhi_rpc'

26

 ψ (2s) $\rightarrow \pi^+\pi^- J/\psi \rightarrow \pi^+\pi^- \mu^+\mu^-$

Good charge Track Selection:

 $|V_z| < 10.0 \text{ cm}$

 $|R_{xy}| < 1.0 \text{ cm}$

 $|\cos\theta| < 0.93$

charge _{every good charge track} = ± 1

Ngood charge track=4, total charge=0

- \succ Candidates for π :
- \checkmark The momentum of the charged track is required to less than 1 GeV
- > Candidates for μ :
- \checkmark The momentum of the charged track is required to greater than 1 GeV
- \checkmark The energy deposited in the EMC of the charged track is less than 0.6 GeV
- > There must be two charged muon candidates, which one is plus and one is minus
- > There must be two charged pion candidates, which one is plus and one is minus
- ➢ 4C Kinematic fit:

Four momentum constrained kinematic fit is perfromed and the χ 2 is less than 200. 2023/6/10

				特征量信息	说明
ReconstructinParticle	"charge"	重建粒子的电荷	MUDTrack	'theta'	在极方向上的夹角
	'mom_x'			'phi'	在xy平面上的夹角
	'mom_y'	粒子在xyz方向上的动量		'hitNum'	在u f 探测器里的击中数 左中四括京(DDC)中的土中
DeeDICIU ikelihaad	'mom_z'			APCHITINUM (PSHitNum)	在电阻恢至(KPC)中的击中 左朔對闪烁休挥测哭上的丰由
		· 法· · · 乙 卿 · 凡 平 由 乙 始 可 华 姆		'maxHit'	有最大击中数所在层的击中数
RECRICHLIKEIIIIOOO	likelihood_e	该松丁限区 万电 丁的可能性 这粒子假识为muon的可能性		'maxHitLaver'	有最多击中数目的层数
	'likelihood k'	该粒了限设为muon的可能性 该粒子假设为kaon的可能性			
	'likelihood pi'	该粒子假设为kaon的可能性	DTOFPid(未来增加使用)	'logL_e'	粒子分别在五种粒子假设下的可能性
	ʻlikelihood_p'	该粒子假设为proton的可能性		'logL_mu'	
				logL_pi	
				logL_k 'logl_n'	
TradicarDooTradic	'halivpar do'	博选华工会粉 博选华上东 小亚西	山上会老占的距离是小的人占	□0g⊑_p : (0) ヒ会耂占仏昉该	
TACKETRECTTACK	'helixPar phi'	∽₩线五参数: 喙腱线工在X-Y半面内与参考点的距离取小的一个点(p0)与参考点的距离 x-√平面上圆心与参差占的连线方位备			
	'helixPar_cpa ',	谷迹横动量倒数,符号与带电径迹的电荷符号相同			
	'helixPar_z0'	x-y平面上螺旋线上到参考点最近的点的z坐标(p0的z坐标)			
	'helixPar_tanl'	螺旋线倾斜度(pz/pt)			
DEDX	'dEdXsepE/MU/PI/K/P'	基于五种粒子假设下的chi2值			
RecECALShower	'numHits'	在ECAL里的击中数目			
	'energy',	重建粒子的能量			
	'eSeed'	种子的能量			
	'e3x3'	3*3晶体内的能量沉积			
	e5x5				
	position_x 'position_y'	Shower的X坐标			
	'position z'	Shower的z坐标			
	'secondMoment '	二阶矩阵			
	'LateralMoment '	横向矩阵			
	'ZernikeMoment{2,0}'	Zernike2*0矩阵			
	'ZernikeMoment{4,2}'	Zernike4*2矩阵			\sim

27