# Method for HEP detector description and visualization in Unity

Tianzi Song (宋天资)Kaixuan Huang (黃凯旋)Yumei Zhang (张玉美)Zhengyun You (尤郑昀)







# 1. Introduction

# 4. Further applications

2. Methodologies

5. Summary

3. Visualization in Unity

#### Visualization requirements for HEP experiments

- Detector design
- Detector construction & assembly
- Detector commissioning
- Experiment operation & maintenance
- Data quality monitoring
- Simulation & reconstruction
- ≻ Event display
- ➢ Physics analysis
- ➤ Education

➢ Outreach



#### HEP Software Foundation Community White Paper Working Group – Visualization

HEP Software Foundation: Matthew Bellis<sup>*a,b*</sup> Riccardo Maria Bianchi<sup>*c*,1</sup> Sebastien Binet<sup>*d*</sup> Ciril Bohak<sup>*e*</sup> Benjamin Couturier<sup>*f*</sup> Hadrien Grasland<sup>*g*</sup> Oliver Gutsche<sup>*h*</sup> Sergey Linev<sup>*i*</sup> Alex Martyniuk<sup>*j*</sup> Thomas McCauley<sup>*k*,1</sup> Edward Moyse<sup>*l*</sup> Alja Mrak Tadel<sup>*m*</sup> Mark Neubauer<sup>*n*</sup> Jeremi Niedziela<sup>*f*</sup> Leo Piilonen<sup>*p*</sup> Jim Pivarski<sup>*q*</sup> Martin Ritter<sup>*r*</sup> Tai Sakuma<sup>*s*</sup> Matevz Tadel<sup>*m*</sup> Barthélémy von Haller<sup>*f*</sup> Ilija Vukotic<sup>*t*</sup> Ben Waugh<sup>*j*</sup>

#### **Visualization Technology from Industry**

- >More advanced visualization techniques
- $\succ$ Creation for game, film, video, education, art, industrial design and training
- ► Professional, stable and long-term support from industry community
- Software Platform System Hardware seamless integration
- ≻Outstanding platforms such as Unity, UnReal





in UnReal



#### 2023/6/11

#### **Unity : A powerful visualization software**

➤Unity is a professional video and game production engine

≻Advantage:

- ≻Professional **3D software**.
- $\succ$ Provide access to VR or AR.
- Supports more than 20 platforms.





Games developed by unity





#### **Application of Unity in HEP**



#### ATLAS event display - CAMELIA



#### JUNO event display - ELAINA







- 1. Introduction 4. Further applications
- 2. Methodologies 5
- 5. Summary

3. Visualization in Unity

#### **Development based on Unity**

 Detector geometry transformation
 A method to transform different formats of detector description into Unity

► Application based on Unity

► Event display, detector optimization, ...

≻Extension

≻Virtual Reality, outreach, ...







> HEP experiments are usually large-scale scientific apparatuses with complicated detector geometry

- Different detector description:
  - ➢GDML➢DD4hep➢Geant4

≻However, none can be directly imported into Unity

**Develop a method for automatic detector transformation!** Works for all detectors, all formats, while keeping consistency







### A feasible transformation method





- ➤ Using the GDML-FreeCAD interface, FreeCAD, and Pixyz software.
- Maintain the unique identifier of each detector unit.
- > Provides richer visualization properties.
- ➤ The method is feasible, however, too complicated and time consuming.

#### A new method under development





2023/6/11

Complete all the transformation processes in one step.

Develop based on <u>HSF Geometry Writer</u>, which has been used in Belle II

- Convert Geant4 detector description and write it into FBX format
- ➤ Update with several features
  - Fine tuning of configuration to solve crash caused by complicated geometry
  - Support self-defined shapes and geometry classes
  - ≻ Fix bugs in GDML-G4 transformation

11

#### Example of interface update in GDML-G4





Before the modification of Boolean operation



After the modification of Boolean operation





- 1. Introduction 4. Further applications
- 2. Methodologies 5. Summary
- 3. Visualization in Unity

#### **GDML** to Unity with **BESIII** detector

SUN VILLEN UNIT

≻The BESIII detector description with GDML

≻Transformed to FBX and displayed in Unity



### Geant4 to Unity with JUNO detector





➤ 3D view of JUNO with FBX transformed from Geant4

Overall view of JUNO and details in part of Central Detector

#### **ROOT** to Unity with EicC detector







EicC detector geometry in FairROOTConverted to FBX from ROOT

#### **DD**4hep to Unity with CEPC





- CEPC detector description based on DD4hep, configured with XML
- Several sub-detectors have been successfully converted into FBX and displayed in Unity
- Still some failure for complex sub-detectors due to naming duplication





1. Introduction

# 4. Further applications

- 2. Methodologies
- 5. Summary

3. Visualization in Unity

#### Unity based Event Display for BESIII





- With the FBX file converted from GDML and implemented in unity.
- A preliminary example of event display for BESIII.
- We expect to get the full
  functionality for overall
  BESIII detector and events.

#### Video for BESIII 3D Event





### Virtual Reality

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

- Platform supports for XR
  Virtual Reality
  Augmented Reality
- Supports for VR/AR devices
  HTC Vive

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

![](_page_20_Picture_7.jpeg)

- ➢ Oculus Quest 2
- > Apple Vision Pro

#### VR demo for BESIII & JUNO

#### VR for BESIII

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

- 1. Introduction 4. Further applications
- 2. Methodologies 5. Summary
- 3. Visualization in Unity

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

- > Detector description and visualization play important roles in HEP experiments
- > A method for HEP detector geometry conversion to Unity is under development
- Promising future applications with industrial supports

![](_page_23_Picture_5.jpeg)

#### 2023年粒子物理实验计算软件与技术研讨会,山东大学,青岛

Thank you for listening.

![](_page_24_Picture_2.jpeg)