

Track Reconstruction on CEPC

<u>Mengyao Liu¹</u>, Yao Zhang², Tao Lin², Wenxing Fang², Chengdong Fu², Weidong Li², Xingtao Huang¹, Ye Yuan², Xueyao Zhang¹

1.Shandong University

2.IHEP

Seminar on Computational Software and Technology for Particle Physics Experiments

Drift Chamber of CEPC

- Drift chamber is the key detector in the 4th conceptual detector design to provide PID
 - Good PID ability (2σ p/K separation at P < ~ 20 GeV/c)
 - Precise momentum measurement (eff. ~100%, σ_p <=0.1%)
- Motivation of DC software project
 - Development of simulation and reconstruction for DC
 - Support the detector design, optimization and performance study
 - Support physics sensitivity study

DC software

- The drift chamber software has been developed from scratch
- CEPCSW
 - Gaudi based framework
 - External libraries and tools
 - Geometry and field map
 - Data model
- Drift chamber
 - DC simulation: done
 - DC digitization: done
 - Track finding: done
 - Track fitting with measurement: done
 - Multi track reconstruction: done
 - Waveform simulation: in progress
 - Waveform reconstruction: in progress
 - dN/dx reconstruction: in progress

Drift chamber simulation and reconstruction flow

Event data model

- DC implement the data model following the EDM4hep
- The extension of the current EDM4hep to accommodate the needs from dN/dx studies

Drift Chamber Parameters in CEPCSW

The baseline configuration of DC in CEPCSW

Half length	2980 mm
Inner and outer radius	800mm to 1800 <i>mm</i>
# of Layers	100/55
Cell size	~10mmx10mm/18mmx18mm
Gas	He:iC ₄ H ₁₀ =90:10
Single cell resolution	0.11 <i>mm</i>
Sense to field wire ratio	1:3
Total # of sense wire	81631/24931
Stereo angle	1.64~3.64 <i>deg</i>
Sense wire	Gold plated Tungsten ϕ =0.02 <i>mm</i>
Field wire	Silver plated Aluminum ϕ =0.04 <i>mm</i>
Walls	Carbon fiber 0.2 mm(inner) and 2.8 mm(outer)

Silicon detectors Parameters in CEPCSW

Silicon tracker	Number of layer	Radius(mm)	$\sigma_{\scriptscriptstyle U}(\mu m)$	$\sigma_{\rm v}(\mu m)$
VXD	3 double layers	16-58	2.8/6/4/4/4/4	2.8/6/4/4/4/4
SIT	4 layers	230-770	7.2	86
SOT(SET)	1 layer	1815	7.2	86

DC Simulation

Following the common scheme for detector description

- XML based compact files for drift chamber detector description
- CRD: Detector/DetCRD/compact/CRD_oX_vYY/CRD_o1_vYY.xml
- Geometry parameters can be flexibly configured

<constant name="DC_layer_number" value="55"/>
<constant name="DC_cell_width" value="18*mm"/>
<constant name="Alpha" value="12*deg"/>

- Cell partitioning with segmentation
 - Consistent between simulation, reconstruction, and analysis
- Simple digitization
 - Constant drift velocity: V_{drift} =40µm/ns & fixed spatial resolution: σ =110µm

Background simulation

- Realized simulation of random background
 - Uniform layer by layer
- Noise level control with job option

Track reconstruction

Track finding

- Track seed: MCParticle or SiTrack
- Combinatorial Kalman Filter (CKF)

Track fitting

- Drift Chamber
- Silicon + Drift chamber
- Salvage hits

Track Reconstruction flow

Track Finding by CKF

- Combinatorial Kalman Filter (CKF)
 - Combines track finding and track fitting in a search-tree-based algorithm
 - Used by many high energy physics experiments
- Track finding using CKF
 - Take reconstructed silicon track as seed
 - Pick DC hits alone track road by quality of Kalman fitting

Track Finding by CKF

Based on the track finding algorithm of Belle II

- CKFToCDCFindlet(main algorithm)
- CDCCKFSeedCreator
- CDCCKFStateFilter
- •••
- Integration with CEPCSW
 - Field: GenfitField
 - Geometry:DD4hep
 - Data io:EDM4hep

- **CDCPathFilterFactory**
- CDCPathTruthVarNames
- **CDCPathTruthVarSet**
- **G** SeedChargeCDCPathFilter
- **G** SizeCDCPathFilter
- C CDCStateBasicVarNames
- CDCStateBasicVarSet
- CDCStateFilterFactory
- DistanceCDCStateFilter
- **G** ExtrapolateAndUpdateCDCStateFilter
- **G** RoughCDCStateFilter
- CDCCKFDuplicateRemover
- **G** CDCCKFPathMerger
- CDCCKFPathSelector
- CDCCKFResultFinalizer
- C CDCCKFResultStorer
- **CDCCKFSeedCreator**
- CDCCKFStateCreator
- CDCCKFStateFilter
- **CKFToCDCFindlet**
- **G** StackTreeSearcher

Track Fitting

- Based on Genfit (https://github.com/GenFit/GenFit/)
 - An experiment-independent **generic track fitting** framework
 - Open sourced, active development and large user community
 - Official track fitting for BelleII, also used by PANDA, COMET, GEM-TPC etc.
 - Become the developer of Genfit
- Main features of Genfit
 - Support various detector types: Pixel or strip, TPC, Drift chamber or tube, and combinations of above
 - Detector geometry and field map can be easily integrated
 - GDML and ROOT format
 - Various fitting algorithms available : Kalman filter, DAF, GBL etc.
 - Extrapolation tools

(a) Measurements with covariance (yellow), planar detectors and drift isochrones (cyan), respectively, and reference track (blue).

Track Fitting

- New implemented of a track fitting with Genfit in CEPCSW
 - Get BField from DD4hep
 - Material and geometry from DD4hep
 - Event data model with EDM4hep
 - A wrapper to the Genfit track and fitters
- RecGenfitAlg
 - Kalman track fitting combine the silicon detector and drift chamber
 - Space point measurement
 - Pixel, strip and wire measurements

- Momentum Resolution v.s. p_T , $cos\theta$
- Vertex Resolution v.s. p_T

The momentum resolution is reasonable

- Sample:
 - single particle(μ^- , $\theta = 50^\circ$)
 - Without noise
- Track Efficiency
 - $(pT_{Rec} pT_{MC}) < 5\sigma_{pT}$
 - $(D0_{Rec} D0_{MC}) < 5\sigma_{D0}$
 - $(Z0_{Rec} Z0_{MC}) < 5\sigma_{Z0}$

The track efficiency is consistent with result using truth

Physical event reconstruction

- ♦ Check with Higgs reconstruction from $H \rightarrow \mu^+ \mu^-$
- Can be used for physical event reconstruction

Summary

- Developed drift chamber software from scratch.
- Completed the whole process from detector simulation, digitization, tracking to physical event reconstruction.
- Can be used for detector optimization and physical analysis.

Thank you for your attention!

Silicon+DC vs Silicons

 Got better momentum measurement with the drift chamber

Single track performance validation

Track parameters pull distribution is reasonable

Momentum resolution check

- Two cell size setups are studied
 - 10mmx10mm and 18mmx18mm

Almost no effect on high momentum region

Momentum resolution check

- drift chamber wire material : Small effect on low momentum region(pT<5GeV)
- Almost no effect after using non-uniform magnetic field

Event Data Model

 DC implements the data model following the EDM4hep (commonly used by ILC, FCC, CEPC, CLIC, ...)

 For drift chamber track simulation and reconstruction: MCParticle, SimTrackerHit, TrackHit, Track

2023/6/10

EDM4hep Extension

- Extending the EDM4hep:
 - To facilitate dN/dx study: simulation and reconstruction
 - The extended EDMs are general and can be used both for the drift chamber and the TPC
 - Have been merged into EDM4hep

TrackFinding Performance

- > With Noise
- Sample: singal particle(μ^- , θ =50^{\circ}, p_T =10GeV)
- Momentum resolution:16.62MeV
- Vertex resolution: 3.994um
- Fitting track effiency (= $\frac{\text{Num}_{\text{rec}}}{\text{Num}_{\text{truth}}}$) v.s. noise level
- The fitting track efficiency remains at 97%

- Sample:
 - single particle(μ^- , $\theta = 50^\circ$, $p_T = 10 GeV$)
 - With noise
- Track Efficiency
 - $(pT_{Rec} pT_{MC}) < 5\sigma_{pT}$
 - $(D0_{Rec} D0_{MC}) < 5\sigma_{D0}$
 - $(ZO_{Rec} ZO_{MC}) < 5\sigma_{ZO}$

Track efficiency is not affected by background

TrackFinding Performance

- Track finding efficiency $(=\frac{N_1}{N_2})$ v.s. p_T
 - N2: number of McParticle
 - N1: $\left(\frac{N_{FoundSingalHit}}{N_{SingalHit}}\right) > 50\%$
- hit efficiency (= $\frac{N_{FoundSingalHit}}{N_{SingalHit}}$) v.s. p_T
- Sample: singal particle(μ^- , θ =50[®])
- Without noise
- Track finding efficiency is basically maintained at 100%
- Low-momentum particle track in circles lead to low hit efficiency

