

BESIII track reconstruction algorithm based on machine learning

<u>Xiaoqian Jia</u>¹, Xiaoshuai Qin¹, Teng Li¹, Xingtao Huang¹, Xueyao Zhang¹, Yao Zhang² and Ye Yuan²

1. Shandong University, Qingdao

2. Institute of High Energy Physics, Beijing

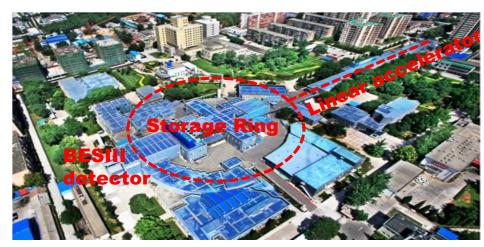
2023 年粒子物理实验计算软件与技术研讨会 June 11, 2023

Outline

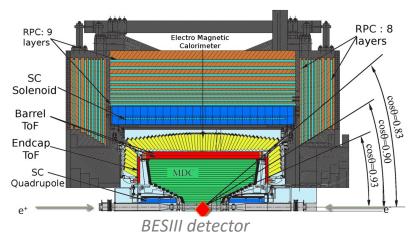
- **01** Motivation
- **02** Methodology
 - > Filtering Noise via GNN
 - ➤ Clustering of Tracks Based on DBSCAN and RANSAC
- **03** Preliminary Results
- **04** Summary

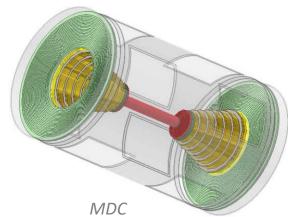
01 BEPCII & BESIII

- Beijing electron-positron collider (BEPCII)
 - Peak luminosity: 10³³ cm⁻² s ⁻¹
 - CMS: 2.0 4.95 GeV, τ -charm region
 - World's largest J/ψ dataset : 10 billion
- Beijing Spectrometer (BESIII)
 - Study the electroweak and strong interactions
 - Search for new physics
- Main Drift Chamber (MDC)
 - 43 sense wire layers
 - dE/dx resolution : 6%
 - Momentum resolution : 0.5%@1GeV/c



Aerial view of the BEPCII





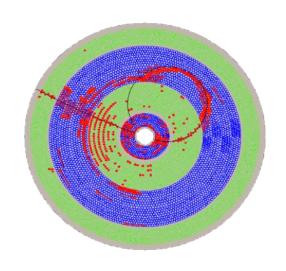
Traditional tracking of BESIII drift chamber

MDC hits produced by charged particles Track finding Track fitting Vertex and physics object reconstruction

- ◆ Identify hits from different tracks
 - Global method : Hough transform (HOUGH)
 - Local method : Template matching for segment (PAT)

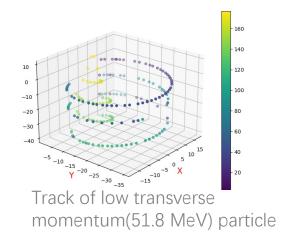
Combinatorial Kalman Filter (CKF)

- Estimate the track parameters
 - Kalman filter
 - Runge-Kutta
- Estimate charged particles properties
 - Momentum and direction
 - Charge



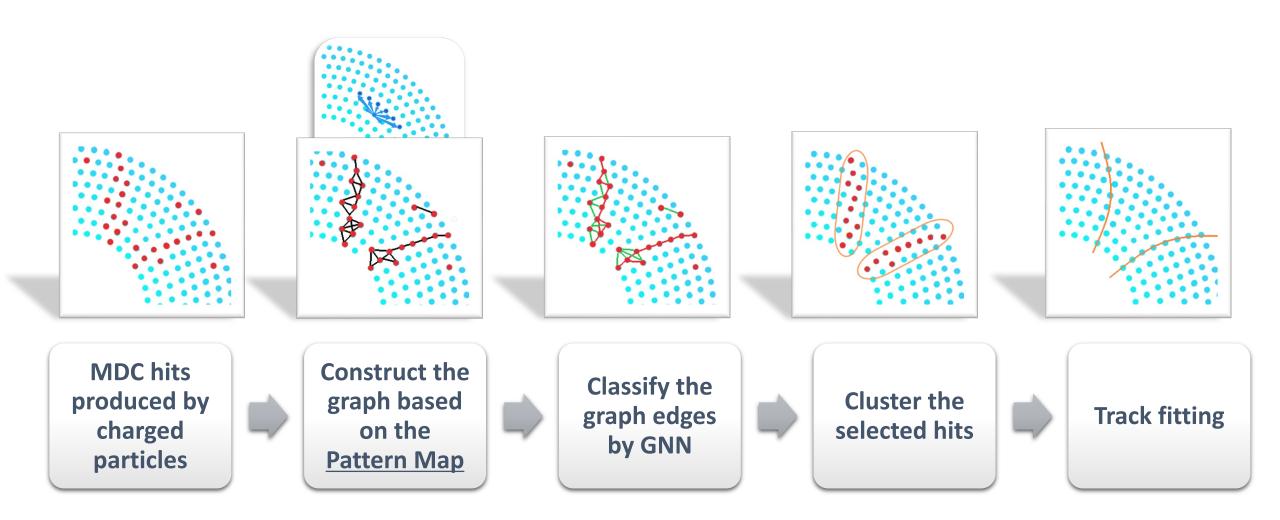
Motivation

- ◆ Further optimizations: Increase the tracking efficiency and performance for special events
 - Low transverse momentum
 - Large dip angle
 - Secondary vertex
- ◆ New Challenge: Higher Background and noise with the upgrade of BEPCII
- But the optimization of the traditional tracking algorithm could be very challenging
- Goals of this study
 - Explore the new tracking method with novel technologies
 - GNN, DBSCAN...
 - Develop experiment independent tracking for other experiments (i.e. STCF, CEPC ...)



ZR view of drift chamber

Methodology: workflow

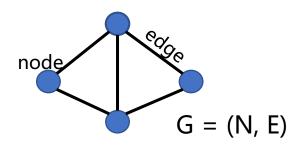


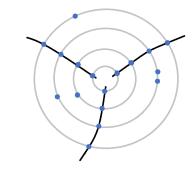
Xiaoqian Jia et al. CHEP 2023

Xiaoqian Jia

Graph Neural Network

- A type of neural network that are specifically designed to operate on graph-structured data
- ◆ Graph: nodes, edges
- ◆ Graph → Track
 - Nodes → Hits
 - edges → track segments





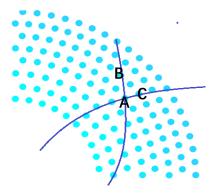
- ◆ GNN key idea: propagate information across the graph using a set of learnable functions that operate on node and edge features
- Graph Neural Network edge classifier
 - High classification score
 - → the edge belongs to a true particle track
 - Low classification score
 - → it is a spurious or noise edge

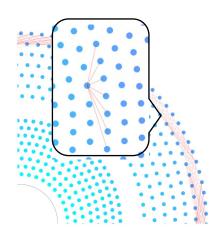
Graph construction

Pattern Map based on MC simulation

To reduce the number of fake edges during graph construction

- Definition of valid neighbors
 - Hits on the same layer
 Two adjacent sense wires on the left and right
 - Hits on the next layer
 The collection of sense wires that could potentially represent two successive hits on a track
- ◆ MC sample used to build pattern map
 - Two million single tracks produced with BESIII offline software (BOSS)
 - 5 types of charged particles (e[±], K[±], μ[±], p[±], π[±])
 - 0.05 GeV/c < P < 3 GeV/c
- Edge assignment based on Pattern Map
 - Hit with its neighbors on the same layer and next layer
 - Hit with its neighbors' neighbors on one layer apart
- To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut
- Graph representation
 - Node features (raw drift time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

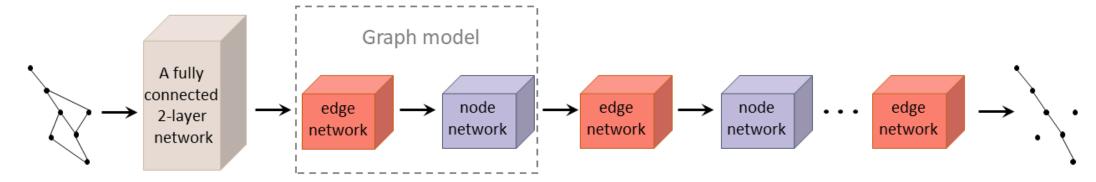




A wire on layer13 and tits neighbors on layer14

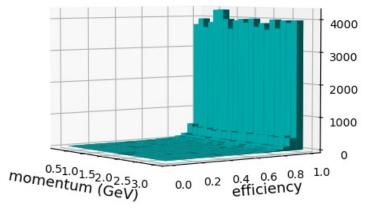
GNN edge Classifier based on PyTorch

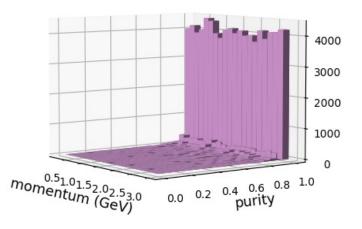
- Input network
 - Node features embedded in latent space
- Graph model
 - Edge network computes weights for edges using the features of the start and end nodes
 - Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
 - MLPs
 - 8 graph iterations
- Strengthen important connections and weaken useless or spurious ones.



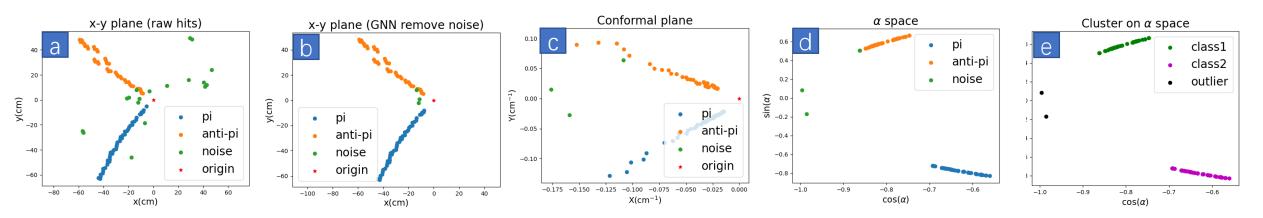
Performance of filtering noise

- Dataset
 - Single-particle (e[±], K[±], μ [±], p[±], π [±]) MC sample
 - 0.2 GeV/c < P < 3.0 GeV/c
 - Mixed with BESIII random trigger data as background (~45% hits)
 - Train: Validation: Test = 4: 1: 1
- Hit selection performance
 - The preliminary results show that GNN provides high efficiency and purity of hits selection
 - Hit selection Efficiency: $\frac{N_{signal}^{predicted}}{N_{signal}^{real}}$
 - Hit selection Purity : $\frac{N_{signal}^{predicted}}{N_{all}^{predicted}}$





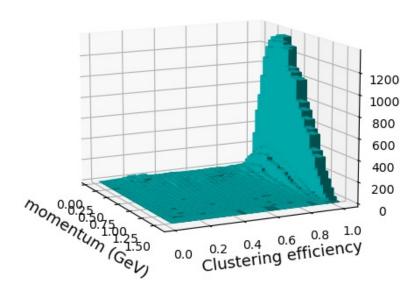
Clustering of Tracks Based on DBSCAN

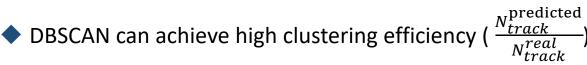


- a) Original MC data sample
 - J/ $\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
 - π⁺, π⁻ : Pt (0.2GeV 1.4GeV)
- b) Remove noise via GNN
- c) Transform to Conformal plane
 - $X = \frac{2x}{x^2 + y^2} Y = \frac{2y}{X^2 + y^2}$
 - Circle passing the origin transform into a straight line

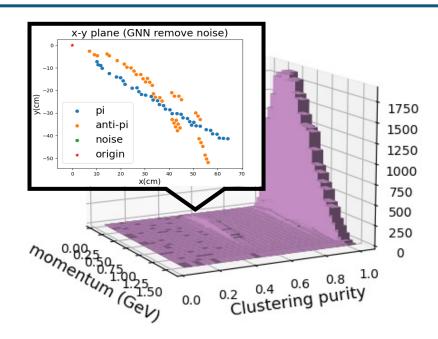
- d) Transform to ' α ' parameter plane
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as $\cos \alpha$ and $\sin \alpha$
- e) DBSCAN clustering in ' α ' parameter plane
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track

DBSCAN Performance



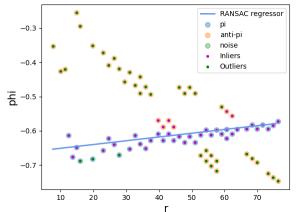


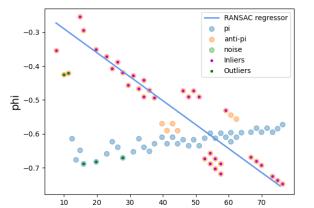
- An obvious bulge at the purity ($\frac{N_{cluster}^{\rm real}}{N_{cluster}^{all}}$) of about 0.5
 - Can not separate hits from the two very close tracks
 - It accounts for about 3.5%

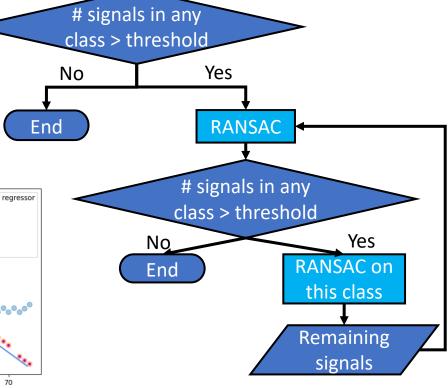


Optimizations

- Random sample consensus (RANCAS)
 - Estimate a mathematical model from the data that contains outliers
 - Its good robustness to noise and outliers
 - Model can be specified
- ◆ RANCAS is triggered by the events that DBSCAN processing fails
 - Polar coordinate space
 - linear model (being optimized to a more suitable model for tracks)
 - Inliers → a track, outliers → other tracks
 - Stop condition: outliers < threshold





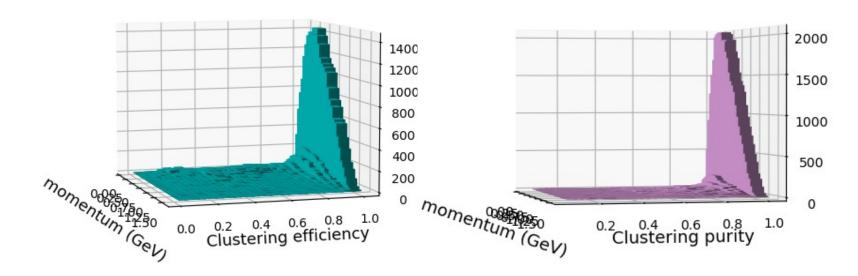


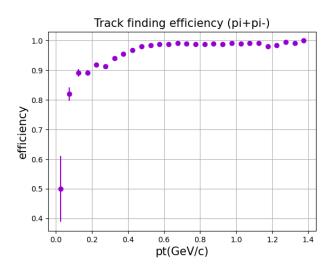
Signals selected by GNN

DBSCAN

Results after Optimizations

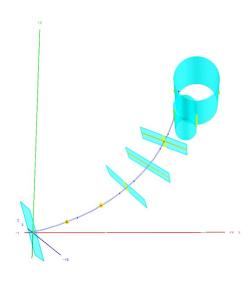
- Removed bulges at purity
- Track finding efficiency
 - $track\ eff = \frac{N_{\text{rec tracks}}}{N_{\text{total tracks}}}$
 - Pt > 0.2 GeV/c , track eff > 90%
 - Pt > 0.45 GeV/c , track eff > 98%





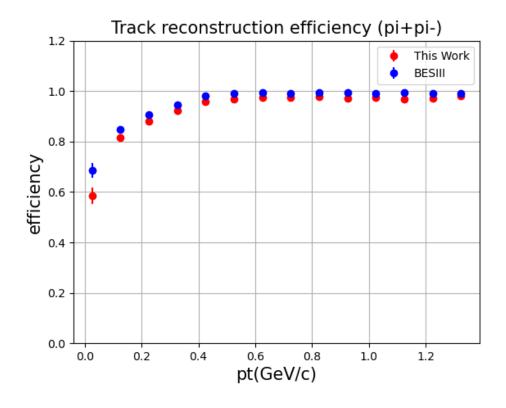
02 Track fitting

- Genfit2
 - A Generic Track-Fitting Toolkit
 - Experiment-independent framework
 - PANDA, Belle II, FOPI and other experiments
 - Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
- ◆ Configuration: Detector geometry and materials
- ◆ Input : Signal wire position, initial values of position and momentum, 5 hypothesis



Preliminary Results

- Particle reconstructed performance
 - J/ $\Psi \rightarrow \rho^0 \, \pi^0 \rightarrow \gamma \, \gamma \, \pi^+ \, \pi^-$ from MC simulation
 - The preliminary results presents promising performance

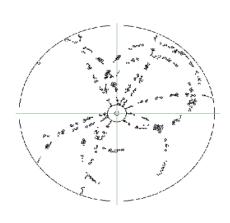


04 Summary

- ◆ A novel tracking algorithm prototype based on machine learning method at BESIII is under development
 - GNN to distinguish the hit-on-track from noise hits.
 - Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks
- Preliminary results on BESIII MC data shows promising performance

Outlook

- ◆ Further optimization of the cluster model is needed
- Performance verification concerning events with more tracks
- Check the reconstruction time



Thank you!

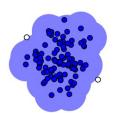
Xiaoqian Jia

Back up

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- ◆ A density-based clustering algorithm that can automatically discover clusters of arbitrary shapes and identify noise points
- Robust to outliers
- Not require the number of clusters to be told beforehand
- Parameter
 - Epsilon (radius of the circle to be created around each data point)
 - MinPoints (the minimum number of data points required inside that circle for that data point to be classified as a Core point)
 - Choose MinPoints based on the dimensionality (≥dim+1), and epsilon based on the elbow in the k-distance graph





RANSAC (Random Sample Consensus)

- ◆ Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the remaining data points belong to the inlier set by calculating their distances to the model
- Accurately estimate model parameters even in the presence of noise and outliers
- ◆ The specific steps
 - Randomly select a small subset of data, called the inlier set
 - Fit a model based on the inlier set
 - Calculate the distances between the remaining data points and the model, and classify these points as inliers
 or outliers based on a certain threshold
 - If the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered good
 - If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached
- ◆ Parameters such as threshold and iteration times need to be preset

Momentum resolution

- ◆ Particle reconstructed performance
 - J/ $\Psi \rightarrow \rho^0 \, \pi^0 \rightarrow \gamma \, \gamma \, \pi^+ \, \pi^-$ from MC simulation
 - The preliminary results presents promising performance

