

Highlights on the XYZ Physics

Frank Nerling HFHF, GSI & GU Frankfurt

Celebration Ceremony of the 500 Publications of BESIII Collaboration, May 31st 2023, IHEP, Beijing, China

<u>Outline</u>

- Introduction
- The BESIII experiments and data sets
- A selection of recent results
 - Supernumerary vector Y states
 - Manifestly exotic Z_c states
 - The X(3872) and other X states
- Summary

Recent hot topics

Hadron Spectroscopy

Strange partner of the famous, unexpected, manifestly exotic Z_c(3900)?

Recent hot topics

Hadron Spectroscopy

Strange partner of the famous, unexpected, manifestly exotic Z_c(3900)?

Charmonium spectrum (cc̄)

Potential model:

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}\\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]\\ &+ \text{ relativistic corrections!} \end{split}$$

c

c

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Frank Nerling

Charmonium spectrum (cc̄)

• Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}\\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]\\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Charmonium spectrum (cc)

• Before 2003:

- Good agreement between theory and experiment, particularly beneath open charm thresholds
- After 2003:
 - Severe mismatch between predicted and observed spectrum

Potential model:

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}\\ V_{\rm spin-dep.} &= \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]\\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Charmonium spectrum (cc̄)

Charmonium spectrum (cc)

Charmonium spectrum (cc)

Simple Quark model

• Mesons: Color neutral $q\overline{q}$ systems

Conventional (qq)

QCD

Meson states beyond qq

BESIII at BEPCII

- Symmetric e⁺e⁻ collider:
 - √s = 2.0 4.6 GeV
- Design luminosity:
 - 1x10³³ cm⁻²s⁻¹ (at ψ(3770), achieved in 04/2016)

- Multi-purpose 4π detector with
 - good tracking
 - calorimetry
 - PID and muon detection
- Operating since March 2008

Unique BESIII data set (collected so far ...)

The Y(4260) and further supernumerary vector states

Some history:

- Discovery of the Y(4260) using ISR by BaBar in $J/\psi\pi^+\pi^-$
- Discovery of the Y(4360) using ISR by BaBar in $\psi(2s)\pi^+\pi^-$

BESIII result, published

- Cross-section inconsistent with the single resonance Y(4260)!
 - > Two favoured over one by >7 σ

- BESIII: Much higher precision (5.8σ)
- Coherent BW fit: Y(4230) and Y(4360)

BESIII result, published

- Cross-section inconsistent with the single resonance Y(4260)
 - Additional structure at ~4.5 GeV needed (?), influences Y(4230) parameters

• BESIII: Much higher precision (5.8σ)

Coherent BW fit: Y(4230) and Y(4360)

What happened to the Y states?

Two structures now resolved: $Y(4260) \rightarrow Y(4230)$, and Y(4360)

₿€SШ

What happened to the Y states?

- BESIII

- Belle

- BaBar

4.5

√s(GeV)

4.6

Y(4230):

> M = (4228.6 ± 4.1 ± 6.3) MeV/c² > Γ = (77.0 ± 6.8 ± 6.3) MeV/c²

Y state at about 4.40 GeV:

- strongly model dependent
- => First Y decays to open-charm
- => Consistency with structures in J/ ψ / h_c / ψ (2S) $\pi\pi$

- BESIII: Much higher precision (5.8 σ)
- Coherent BW fit: Y(4230) and Y(4360)
- Confirmation of the Y(4360) in $\psi(2S)\pi^{-}\pi^{+}$ with a significance of 8 σ
- First observation of Y(4660) with 5.8σ

 $e^+e^- \to \psi(2S)\pi^+\pi^-$

- BESIII: Much higher precision (5.8σ)
- Coherent BW fit: Y(4230) and Y(4360)

 $e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$

- Observation of Y(4660) $\rightarrow \psi(2S)\pi^{-}\pi^{+}$ with a significance of 8.1 σ
- First observation of Y(4660) at BESIII

BESI What about Y states to open charm?

Y(4230):

> M = $(4228.6 \pm 4.1 \pm 6.3) \text{ MeV/c}^2$ > $\Gamma = (77.0 \pm 6.8 \pm 6.3) \text{ MeV/c}^2$

Y state at about 4.40 GeV:

- strongly model dependent
- => First Y decays to open-charm
- => Consistency with structures in J/ ψ / h_c / ψ (2S) $\pi\pi$

What happened to the Y states?

E_{CM}(GeV)

Y(4230):

- \blacktriangleright M = (4209.6 ±4.7 ±5.9) MeV/c²
- \succ $\Gamma = (81.6 \pm 17.8 \pm 9.0) \text{ MeV}$

Y(4500):

- \blacktriangleright M = (4469.1 ± 26.2 ± 3.6) MeV/c²
- \succ $\Gamma = (81.6 \pm 17.8 \pm 9.0)$ MeV

Y(4660):

- \blacktriangleright M = (4675.3 ±29.5±3.5) MeV/c²
- \succ $\Gamma = (218.2 \pm 72.9 \pm 9.3)$ MeV
 - => Consistency with structures in $J/\psi / h_c / \psi(2S)\pi\pi \& J/\psi KK$

Y(4230):

- \blacktriangleright M = (4228.6 ± 4.1 ± 6.3) MeV/c²
- \succ $\Gamma = (77.0 \pm 6.8 \pm 6.3) \text{ MeV/c}^2$

Y state at about 4.40 GeV:

- strongly model dependent
- => First Y decays to open-charm
- => Consistency with structures in $J/\psi / h_c / \psi(2S) \pi \pi$

The Y states, e⁺e⁻ production of J/ $\psi\pi\pi$, h_c $\pi\pi$, $\psi(2S)\pi\pi$ and J/ ψ K⁺K⁻

- Dressed cross-section measurement of $e^+e^- \to \, K^+K^- \, J/\psi$
- Y(4230) and Y(4500) observed (29σ / 8σ)
 M = (4484.7 ± 13.3 ± 24.1) MeV/c²
 Γ = (77.0 ± 6.8 ± 6.3) MeV

The Y states, e⁺e⁻ production of J/ψ $\pi\pi$, h_c $\pi\pi$, ψ(2S) $\pi\pi$ and J/ψK_sK_s

- Data samples from 4.13 to 4.95 GeV (21.2 fb⁻¹)
- Dressed cross-section measurement of $e^+e^- \rightarrow K_s^{\ 0}K_s^{\ 0} \ J/\psi$

- Evidence for $Y(4710) \rightarrow K_s^{\ 0}K_s^{\ 0} J/\psi$ (4.0 σ) > $M = (4704.0 \pm 52.3 \pm 69.5) \text{ MeV/c}^2$
 - $\Gamma = (183.2 \pm 114.0 \pm 96.1) \text{ MeV}$
- Y(4230) $\rightarrow K_s^{\ 0}K_s^{\ 0} J/\psi$ observed for the first time (26 σ)

The (charged) Zc states

EXAMPLE SILE Two Z_c triplets established at BESIII

• Two isospin triplets of charmonium-like exotic states established

UNIVERSITÄ

Here a stablished at BESIII Two Z_c triplets established at BESIII

- Two isospin triplets of charmonium-like exotic states established
- Different decay modes (hidden vs. open charm) of same state observed?

EVALUATE: First Z_{cs} candidates Z(3985) reported

- Search for strange partner of $Z_c(3900)$
 - ➤ Containing s quark in open charm decay > $e^+e^- \rightarrow K^+(D_sD^*/D_s^*D)^-$
 - > Narrow threshold enhancement (5.3 σ)

$$M = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{MeV}/c^2, \Gamma = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{MeV}$$

- Manifestly exotic charged hidden-charm tetraquark candidate with strangeness
 - With a non-zero electric charge
 - Thus, minimal quark content => [ccsu]
- LHCb reports a $Z_{cs}(4000)$ in B $\rightarrow \phi(J/\psi K^+)$ > $M = (4000.3 \pm 6^{+4}_{-14}) MeV/c^2,$ $\Gamma = (131 \pm 15 \pm 26) MeV$
 - > $J^{P} = 1^{+}$, hidden charm final state
 - > 10x broader ...
- => Same state observed in different decays (open/hidden charm) at two experiments?

EXEMINATE SET UP: First Z_{cs} candidates Z(3985) reported

- Search for strange partner of $Z_c(3900)$
 - ➤ Containing s quark in open charm decay > $e^+e^- \rightarrow K^+(D_sD^*/D_s^*D)^-$
 - > Narrow threshold enhancement (5.3 σ)

$$M = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{MeV}/c^2, \Gamma = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{MeV}$$

- Manifestly exotic charged hidden-charm tetraquark candidate with strangeness
 - With a non-zero electric charge
 - > Thus, minimal quark content => [ccsu]
- Search for neutral partner of $Z_{cs}(3985)$
 - Containing s quark in open charm decay

$$e^+e^- \to K^0_{\rm S}(D^+_s D^{*-} + D^{*+}_s D^-)$$

> Narrow threshold enhancement (4.6 σ)

$$M = (3992.2 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$$

$$\Gamma = (7.7^{+4.1}_{-3.8} \pm 4.3) \text{ MeV}$$

=> Seem to be isospinpartners

The charged Z_{cs}'

- Search for excited partner of $Z_{cs}(3985)$
 - > 3 different data samples at $\sqrt{s} = 4.661$, 4.682 and 4.699 GeV (2.7 fb⁻¹)
 - $\blacktriangleright e^+e^- \rightarrow K^+D_s^{*-}D^{*0} + c.c.$
 - two different tag-methods (D_s⁻-/D^{*0}-tags)
- Evidence for a Z_{cs} state > $M = (4123.5 \pm 0.7) MeV/c^2$
 - > 2.1 σ significance (3.9 σ \wo systematics)
- Statistics limited, test of decay width hypotheses, local statistical 4.1 σ for: $(M_0, \Gamma_0) = (4124.1 MeV/c^2, 10 MeV)$
- Upper Limits (CL90) provided: on σ_{Born} x BR: *O*(1) pb
 - > UL on $\sigma_{Born} x BR$: : O(1) pb
 - > at each \sqrt{s} = 4.661, 4.682 and 4.699
 - => More data will be taken

The X(3872) and further X states

SII Experimental review of the X(3872)

Analogy to deuteron:

- First observed by Belle in 2003
 - $\succ X(3872) \rightarrow J/\psi \pi^+ \pi^-$
 - very narrow state with J^{PC} = 1⁺⁺
- Belle & BaBar report signal in > $X(3872) \rightarrow D^0 \bar{D}^{*0}$
- Mass $m[X(3872)] m[D^{*0}] m[D^0]$ = (-0.07 ± 0.12) MeV/c² (LHCb 2020)
- Width measurement:
 - ≻ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>
 - ➤ Γ_{X(3872)} = 1.13 MeV (2020, LHCb)

For clarification: => Precision measurement with

sub-MeV resolution needed!

EESI First observation of $e^+e^- \rightarrow \gamma X(3872)$

BESIII: First observation of
$$e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$$

First observation of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$

- $m = (3871.9 \pm 0.7 \pm 0.2) \,\mathrm{MeV}/c^2$
- $\Gamma < 2.4 \,\mathrm{MeV}$ (90% CL)

• Fit with three Breit-Wigner resonances => Evidence for two more structures

ESI First observation of $e^+e^- \rightarrow \gamma X(3872)$

- $m = (4200.6^{+7.9}_{-13.3} \pm 3.0) \text{ MeV}/c^2$
- $\Gamma = (115^{+38}_{-26} \pm 12) \text{ MeV}/c^2$

 Shape consistent with production via a Y(4260) state

[Subm. to Phys. Rev. Lett., arXiv:1903.04695 [hep-ex]]

Study of $e^+e^- \rightarrow \gamma \phi J/\psi$

- BESIII successfully operating since 2008
 - World largest data sets in tau-charm mass region, unique XYZ data
 - > Recent machine upgrade extends studies up to $E_{cms} = ~4.9 \text{ GeV}$
- BESIII successfully operating since 2008
 - Supernumerary vector Y states consistently resolved (statistics)
 - Y(4260) and Y(4360) → Y(4230), Y(4360)
 - First decays to open charm, further new decay modes to cc and/or light hadrons investigated
 - More candidates reported, especially Y(4500), Y(4710), and Y(4660)
 - \succ Charged Z_c states are manifestly exotic states
 - First complete isospin triplets established
 - First strange partner(s) reported, isospin triplet Z_{cs}(3895)
 - > The first of these states discovered, the X(3872) still not understood
 - Line shape to be measured precisely
 - X(4140,), X(4274), X(4500) $\rightarrow \phi J/\psi$ not seen
- Next machine upgrade planned (summer 2024) => E_{cms} > 5GeV

Summary and Prospectives

- BESIII successfully operating since 2008
 - World largest data sets in tau-charm mass region, unique XYZ data
 - > Recent machine upgrade extends studies up to $E_{cms} = ~4.9 \text{ GeV}$
- BESIII successfully operating since 2008
 - Supernumerary vector Y states consistently resolved (sta Thank you!
 - Y(4260) and Y(4360) → Y(4230), Y(4360)

Summary and Prospectives

BEPCII Upgrade (higher luminosity at higher energies)

- Machine upgrade: 2 new cavities (RF), higher currents
- Higher luminosities at higher energies, e.g. factor ~3 at 2.3 GeV
- After shutdown collect more XYZ data at 4.6 5.5 GeV

Study of $e^+e^- \rightarrow \gamma \phi J/\psi$

 $e^+e^- \rightarrow \gamma \phi \chi_{c2}$

- Cross section measurement: $e^+e^-
 ightarrow \phi \chi_{c2}$
- Evidence for Y(4660) $\rightarrow \phi \chi_{c2}$
- Statistical significance of 3.1σ
- No signal for Y(4660) $\rightarrow \phi \chi_{c1}$
- Different fit models:
 - Single BW model (red line)

 $M = (4672.8 \pm 10.8 \pm 3.9) \text{ MeV}/c^2$ $\Gamma = (93.2 \pm 19.8 \pm 9.4) \text{ MeV}$

New production processes of X(3872)

Production mechanisms

- B meson decays (discovery by Belle, 2003)
- Radiative transitions (e.g. from Y(4230), BESIII)
- Prompt production (e.g. pp collisions, e.g. CMS)
- Two-photon fusion (evidence by Belle, 2021)

Two-photon fusion at BESIII

- VMD prediction: Γ_{ee} ≥ 0.036 eV [A.Denig et al. PLB 736 (2014) 221]
- After observation (5.1 σ) of $e^+e^- \rightarrow \chi_{c1}$ [BESIII, PRL 129 (2022) 122001]
- Search for $e^+e^- \rightarrow X(3872)$
 - No enhancment observed in cross section
 - > Provide UL(CL90) assuming average value: $\Gamma_{tot} = 1.19 \text{ MeV}$

$$\Rightarrow \quad \frac{\Gamma_{ee} \times \mathcal{B} < 7.5 \times 10^{-3} \text{ eV}}{\Gamma_{ee}(X(3872)) < 0.32 \text{ eV}}$$

Observation of $e^+e^- \rightarrow \omega X(3872)$

- 9 data samples from 4.66 to 4.95 GeV (4.7 fb⁻¹)
- First observation of this production process \rightarrow just above threshold

- $m = (3871.9 \pm 0.7 \pm 0.2) \text{ MeV}/c^2$ $\Gamma < 2.4 \text{ MeV}$ (90% CL)
- $\Gamma < 2.4 \,\mathrm{MeV}$

X(3872) and ω signal regions

EFSI First observation of $X(3872) \rightarrow \chi_{c1}\pi^0$

• No significant signals were found by Belle in search for X(3872) and X(3915) to $\chi_{c0} \pi^0$ (0.3 σ / 2.3 σ)

 $> \mathcal{B}(X(3872) \rightarrow \chi_{c1}\pi^0)/\mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-) < 0.97 (90\% \text{ C.L.})$

- BESIII observes now X(3872) decay to $\chi_{c0} \pi^0$ (> 5 σ)
 - > $\mathcal{B}(X(3872) \to \chi_{c1}\pi^0)/\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = 0.88^{+0.33}_{-0.27} \pm 0.10.$

Isospin violation, comparable decay rate to $J/\psi\rho$ => Disfavours $\chi_{c1}(2P)$

Further decays of Y(4260)

Frank Nerling

Further decays of Y(4260)

 $e^+e^- \rightarrow J/\psi \eta$

- Simultaneous maximum-likelihood fit (Top: High stat. XYZ data, Bottom: Scan data)
- $\psi(4040)$ assumed, Y(4220), Y(4390) ?
- Significance of Y(4390) = 6.0 σ
- Y(4220) & Y(4390) mass and width compilation vs. Y(4360) from PDG:

Hereford With States and Second States (1997) "Y(4260)" in different decay channels

$\sim c\overline{c} \text{ MESONS} > \psi(4230) > \psi(4230) \text{ MASS}$							
	$\psi(4230)$ MASS						NSPIR
	VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
	$\textbf{4222.7} \pm \textbf{2.6}$	OUR AVERAGE Error includes scale	factor of 1.7. See th	e ideogra	m below.		
	$4234.4 \pm \! 3.2 \pm \! 0.2$		¹ ABLIKIM	2021AJ	BES3	$e^+ e^- ightarrow \pi^+ \pi^- \psi(2S)$	
	$4216.7 \pm \! 8.9 \pm \! 4.1$		² ABLIKIM	2020AG	BES3	$e^+ \; e^- ightarrow \mu^+ \mu^-$	
	$4220.4 \pm \! 2.4 \pm \! 2.3$		³ ABLIKIM	2020N	BES3	$e^+ e^- ightarrow \pi^0 \pi^0 J/\psi$	
	$4218.6 \pm 3.8 \pm 2.5$		³ ABLIKIM	20200	BES3	$e^+ \; e^- o \eta J/\psi$	
	$4218.5 \pm \! 1.6 \pm \! 4.0$		⁴ ABLIKIM	2019AI	BES3	$e^+ \; e^- ightarrow \omega \chi_{c0}$	
	$4228.6 \pm \!$		ABLIKIM	2019R	BES3	$e^+~e^- ightarrow \pi^+ D^0 D^{*-}$ + c.c.	
	$4200.6 \ {}^{+7.9}_{-13.3} \pm 3.0$		⁵ ABLIKIM	2019V	BES3	$e^+ \; e^- ightarrow \gamma \chi_{c1}(3872)$	
	$4222.0 \pm 3.1 \pm 1.4$		⁶ ABLIKIM	2017B	BES3	$e^+ \; e^- ightarrow \pi^+ \pi^- J/\psi$	
	$4218 \ _{-4.5}^{+5.5} \pm 0.9$		ABLIKIM	2017G	BES3	$e^+ e^- ightarrow \pi^+ \pi^- h_c$	

PDG calls the narrow structure meanwhile $\psi(4230)$ — seen in many different decay modes, mainly charmonium + light meson(s)

BESIT Vector states: Hidden-charm production

• different channels show (slightly) different masses and widths

• coupled channel studies are needed!

PDG calls the narrow structure meanwhile $\psi(4230)$ — seen in many different decay modes, mainly charmonium + light meson(s)