REVIEW CHARMONIUM DECAYS BY 9 PAPERS

Celebration Ceremony of the 500 Publications of BESIII Collaboration

2023-5-31, IHEP & on-line Joint

Kai Zhu

- ► arXiv: 0809.1869
- ► 2008-10-10

O# PAPER OF BESIII

KAI ZHU @ BESIII 500

2023/5/31

 \cap

Chapter 13

Theoretical Frameworks of Charmonium Physics

dynamics both within and beyond the Standard Model [1]. These are multi-scale systems that probe all of the energy regimes of QCD: from the hard region, where expansions in the coupling constant are legitimate, to the low-energy region, where nonperturbative effects dominate. Heavy quark-antiquark states are thus an ideal, and to some extent unique, laboratory where our understanding of nonperturbative QCD and its interplay with perturbative QCD can be tested in a controlled framework. In correspondence with the hierarchy of energy scales in quarkonia, a hierarchy of nonrelativistic effective field theories (NR EFT) may be constructed, each one with fewer degrees of freedom that are left dynamical and thus simpler. Some of these physical scales are large and may be

"PHYSICS AT BES-III" (YELLOW BOOK)

IHEP-Physics-Report-BES-III-2008-001

Physics at **BES-III**

Editors Kuang-Ta Chao and Yifang Wang

> **3** 23/5/31

5 Charmonium transitions	327						
15.1 Hadronic transitions	327						
15.1.1 QCD Multipole Expansion							
15.1.2 Hadronic Transitions Between S -Wave Quarkonia							
15.1.3 $\pi\pi$ Transitions of D -Wave Charmonium	331						
15.1.4 Studying the h_c State \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	333						
15.1.5 $\pi\pi$ Transitions of P -Wave Quarkonia	335						
15.1.6 Summary							
15.2 Radiative transition	338						
15.2.1 E1 radiative transitions	338						
15.2.2 Accessing the new states near 3.9 GeV through E1 transitions	342						
15.2.3 M1 radiative transitions	343						
	44						
18 Hadronic decays 393	4 4						
18.1 Light-hadron decays	3 45						
18.1.1 J/ψ , ψ' decay	4 18						
18.1.2 η_c decay) 40						
18.1.3 <i>P</i> -wave χ_{cJ} decay	5 60						
18.2 P-wave h_c decay	8 62						
$18.5 \ \rho - \pi \text{ puzzle} \qquad \qquad 400$	62						
18.3.2 Review of theoretical work on the $\alpha\pi$ puzzle 400	62						
18.3.3 Summary 113	, 63						
18.4 Open-flavor decays 411							
18.5 $\psi(3770)$ non- $D\overline{D}$ decays							
18.5.1 Introduction	l l						
18.5.2 S-D mixing and mixing angle θ_{mix}	5						
18.5.3 Electromagnetic transitions	7						
18.5.4 Hadronic transitions)						
18.5.5 Light hadron decays $\ldots \ldots 421$							
18.5.6 Studies of inclusive decays $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 42^{4}$	Ł						
18.5.7 Summary	7						
18.6 Baryonic decays	7						
18.6.1 Introduction $\ldots \ldots \ldots$	7						
NAI 478.6.2 PERuseffical Framework	3						

16 Charmonium Leptonic and EM Decays 365	
16.1 Leptonic and EM Decays in Potential Models	
16.1.1 e^+e^- widths of $1^{}$ states $\ldots \ldots 365$	
16.1.2 Two-photon couplings $\ldots \ldots 366$	
16.1.3 QCD radiative and relativistic corrections to EM decays	
16.2 Leptonic and EM Decays in Effective Field Theories	
16.2.1 Introduction \dots 371	
16.2.2 Weak coupling regime $\dots \dots \dots$	
$10.2.5 \text{ Final discussion} \dots \dots$	
17 Radiative decays379	
17.1 Inclusive Radiative Decays	
17.1.1 Introduction \ldots 379	
17.1.2 The photon spectrum $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 379$	
17.1.3 Extraction of $\alpha_{\rm s}(M_{J/\psi})$	
17.1.4 Learning about the nature of J/ψ and $\psi(2S)$	
10 Bare and forbidden charmonium decays	115
10.1. Week Decours of Charmonium	445
19.1 Weak Decays of Charmonium	. 440
19.1.1 Semileptonic Decays of Charmonium	. 445
19.1.2 Two-body Weak Hadronic Decays of Charmonium	. 446
19.1.3 Searches at $B\!E\!S$ -III \ldots	. 448
19.2 Search for the invisible decays of Quarkonium	. 449
19.3 Search for C or P violating processes in J/ψ decays	. 454
19.4 Lepton flavor violating processes in decays of J/ψ	. 456
20 Miscellaneous	459
20.1 Bell inequalities in high energy physics	. 459
20.2 Special topics in $B\bar{B}$ final states	. 465
20.2.1 $SU(3)$ flavor symmetry breaking effects	. 465
20.2.2 CP violation $\ldots \ldots \ldots$. 466
20.2.3 Exotic states	469
20.2.6 Enote States 1	. 100

* runno	status	start-time	end-time	no-of-evts	no-of-had	lumi :
0007958	0	2009-03-03 19:14:23	2009-03-03 20:39:01	6107517	-1	-1.000 :
0007959	0	2009-03-03 20:47:00	2009-03-03 20:56:22	344811	-1	-1.000 :
0007960	0	0000-00-00 00:00:00	0000-00-00 00:00:00	1	-1	-1.000 :
0007961	Ο	0000-00-00 00.00.00		data ta	king 1	$-1 000 \cdot$
0008092	2	2009-03-06 03:24:00	2009-03-06 0 φ		KII9 ₂	894.400 :
MDC HV w	arned once	at_ <u>4:15 AM</u>				
0008093	3	2009-03-06 06:14:00				. 600 :
0008094	-2	0000-00-00 00:00:00			\	. 000 :
0008095	-2	0000-00-00 00:00:00				. 000 :
0008096	-2	0000-00-00 00:00:00				. 000 :
0008097	-2	0000-00-00 00:00:00				. 000 :
0009022	-3	2009-04-14 01:28:49				000 :
0009023	2	2009-04-14 02:11:05		1		336
MUC BD4 r	no HV		↓ · · · · · · · · · · · · · · · · · · ·	儿		
0009024	2	2009-04-14 04:42:21				745 :
MUC RD4 r	no HV. TOF '	Lest high poise level				
0009025	2	$2009-04-14$ 06 $\cdot 21 \cdot 35$			(753 .
MIC BD4 r	no HV beam	lost MDC trip stop	XY Vice	Zittes		100 .
	io iii, bouii	ross, mbo orrb stop				

8093: First Physics Run @ BESIII

Copy from MESON 2010

KAI ZHU @ BESIII 500

2023/5/31

- arXiv: 1002.0501
- ► 2010-02-02
- Phys. Rev. Lett. 104, 132002 (2010)

1# PAPER OF BESIII

First measurement: $B(\psi(3686) \rightarrow \pi^0 h_c) = (8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$ $B(h_c \rightarrow \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$

Measurement of h_c in $\psi(3686)$ decay

)23/5/31

► arXiv: <u>1104.5068</u>

- > 2011-04-28
- Phys. Rev. Lett.107, 092001 (2011)

9# PAPER

$$\begin{split} B(\chi_{c1} \to \phi \phi) &= (4.4 \pm 0.3 \pm 0.5) \times 10^{-4} \\ B(\chi_{c1} \to \omega \omega) &= (6.0 \pm 0.3 \pm 0.7) \times 10^{-4} \\ B(\chi_{c1} \to \omega \phi) &= (2.2 \pm 0.6 \pm 0.2) \times 10^{-5} \end{split}$$

Observations of $\chi_{c1} \rightarrow VV$ violate helicity selection rule

KA

- ▶ arXiv:1111.0398
- ► 2011-11-02
- Phys. Rev. Lett. 108, 222002 (2012)

14# PAPER

2023/5/31

 $M: 2984.3 \pm 0.6 \pm 0.6 \text{ MeV}; \Gamma: 32.0 \pm 1.2 \pm 1.0 \text{ MeV}$

 η_c parameters: consider interference

13

- ▶ arXiv: <u>1205.5103</u>
- ► 2012-05-23
- Phys. Rev. Lett. 109, 042003 (2012)

 $B(\psi(3686) \rightarrow \gamma \eta_c(2S)) \times B(\eta_c(2S) \rightarrow K\overline{K}\pi) = (1.30 \pm 0.20 \pm 0.30) \times 10^{-5}$

First observation of the M1 transition $\psi(3686) \rightarrow \gamma \eta_c(2S)$

Run: 25338-27090

- > Time: 2011-12-31 to 2012-03-30
- ▶ Lum: 600/pb
- Nevt: 341 M

More ψ' data set: total 448M (2009+2012)

- ► arXiv: <u>1603.04936</u>
- ► 2016-03-17
- Phys.Rev.Lett. 116, 251802 (2016)

123# PAPER

 $B(h_c \to \gamma \eta') = (1.52 \pm 0.27 \pm 0.29) \times 10^{-3}$ $B(h_c \to \gamma \eta) = (4.7 \pm 1.5 \pm 1.4) \times 10^{-4}$

 $h_c \rightarrow \gamma \eta'$: 8.4 σ

 $h_c \rightarrow \gamma \eta$: 4.0 σ

Observation of h_c radiative decay

KAI ZHU @ BESIII 500

based on 448M ψ'

- ▶ arXiv: 1912.05983
- ► 2019-12-12
- Chin. Phys. C 44, 040001 (2020)

288# PAPER

The charmonium observables can be taken from spectroscopy (e.g. masses and widths), transitions (e.g. transition rates), leptonic and electromagnetic decays, radiative decays, hadronic decays, rare and forbidden decays, and some miscellaneous topics such as the Bell inequalities in high energy physics and special topics in $B\bar{B}$ final states, where B refers to baryon. BESIII is well suited to address the remaining experimental questions that are related to the low-mass charmonium spectrum, i.e. below the open-charm threshold, such as a precise determination of the mass and width of η_c , h_c , and $\eta_c(2S)$. The QCD multipole expansion (QCDME) [15, 16] is a feasible approach for the charmonium hadronic transitions. Its results can be examined via observations at BESIII such as the $\pi\pi$ transitions of S-wave (P-wave or D-wave) charmonium states, the η transition $\psi(3686) \rightarrow \eta J/\psi$, and the iso-spin violating π^0 transition $\psi(3686) \rightarrow \pi^0 h_c$. Many ra-

FUTURE PHYSICS PROGRAMME OF BESIII (WHITE PAPER)

measurement	expected sensitivity on branching fraction
$h_c \rightarrow hadrons$	observation of 5×10^{-4}
$\eta_c(2S) \to X$	observation of 1×10^{-6}
$\chi_{c1} \to \pi^+ \pi^- \eta_c$	evidence of 3×10^{-3}
$h_c ightarrow \pi^+ \pi^- J/\psi$	evidence of 2×10^{-3}
$\chi_{cJ} \rightarrow \gamma V$	observation of 1×10^{-6}
$h_c \to p\bar{p}$	evidence of 2×10^{-4}
	data sets

	plan	data sets
	500 pb^{-1} at a large number of points between 4.0 and 4.6 GeV	
	XYZ plan (2)	5 fb ⁻¹ at 4.23, 4.42 GeV for large Z_c samples
	XYZ plan (3)	5 fb^{-1} above 4.6 GeV
(AI ZHU @	charmonium plan	$3 \times 10^9 \psi(3686)$ decays

2021 psi(2S), 3.4/fb (on-line), 2.26 B (preliminary)_

66257-69292

2022 3.65, 3.682 (ON-LINE) [edit]

Sample	Runno	Ecms(MeV)	luminosity(1/pb)	location
3650	69612-70132	3650	410	/bes3fs/offline/data/709-1/3650/round15/
3682	70133-70505	3682	404	/bes3fs/offline/data/709-1/3682/round15/

large continuum

Total ~2.7B $\psi'(2009+2012+2021)$ measurements based on whole data are on-going

- ► arXiv: <u>1503.08203</u>
- > 2015-03-26
- Phys. Rev. Lett. 115, 011803 (2015)

85# PAPER

22

 $\sqrt{s} = 4.23, 4.26, 4.36, 4.42, 4.60 \text{ GeV}$ M: (3821.7 ± 1.3 ± 0.7) MeV, Γ : < 16 MeV

 $e^{+}e^{-} \to \pi^{+}\pi^{-}X(3823), X(3823) \to \gamma \chi_{c1}$ $\psi_{2}(1^{3}D_{2})$ BESIT 500

- ▶ arXiv: 2212.12165
- ▷ 2022-12-23
- Phys. Rev.D 107, L091101 (2023)

470# PAPER

2023/5/31

 $\sigma^{B}(e^{+}e^{-} \rightarrow \eta J/\psi) = (8.88 \pm 0.87 \pm 0.42)pb, \sqrt{s} = 3.773 \ GeV$ $B(\psi(3770) \rightarrow \eta J/\psi) = (11.3 \pm 5.9 \pm 1.1) \times 10^{-4}$

 $\psi(3770) \to \eta J/\psi$

interference with continuum and higher vector states

2010-2023

VARIOUS MEASUREMENTS

We are excited, we are proud, but we are still far away from the target.

Matching LQCD for non-perturbative part Test predictions based perturbative calculations Inputs for phenomenological (potential) models Check features from EFT (NRQCD, pNRQCD), etc.

. . .

OPEN MIND, WORK HARD, PUBLISH MORE, UNDERSTAND BETTER

THANK YOU!

31 2023/5/31

Measurement of the Branching Fraction for the Decay $\psi(3686) \rightarrow \phi K_S^0 K_S^0$

- arXiv: 2303.08317
- > 2023-03-15
- Submitted to Phys. Rev. D
- Most recent charmonium decay paper till 2023-5-31

488# PAPER

