

Highlight on precise hyperon physics at BESII

---- Ceremony of the 500 publications of BESIII collaboration

Jianyu Zhang

University of Chinese Academy of Sciences, Beijing, China

Outline • CP tests in hyperon decays

Recent results from BESIII

Hyperon physics in future plans

Summary and outlooks

CP tests in hyperon decays

500 Publications of BESIII (Hyperon sector

2023/5/3

Matter-antimatter asymmetry in the universe

The Big Bang model predicts:

- > Matter and antimatter are produced in equal amounts
- > Matter and antimatter annihilated into energy

However the very fact that we exist in a matter-dominated universe.

Sakharov three conditions require *C* and *CP* violation processes exist.

Andrei Sakharov (1921 - 1989)

Sakharov three conditions:

- Baryon number B violation
- *C* and *CP* symmetry violation 2.
- Interactions out of thermal equilibrium

Pisma Zh. Eksp. Teor. Fiz., 1967, 5: 32-35.

A brief history of Parity and CP violation

CPV in Standard Model: CKM matrix

CPV in hyperon decay

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

The amplitude of spin $\frac{1}{2}$ baryon B_i decay to a spin $\frac{1}{2}$ baryon B_f and π :

$$\boldsymbol{\mathcal{A}} \sim \boldsymbol{S} \boldsymbol{\sigma}_0 + \boldsymbol{P} \boldsymbol{\sigma} \cdot \boldsymbol{\hat{n}}$$

The decay parameters are defined as:

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

Two complex amplitudes: ϕ weak phase, δ strong phase

$$S = \Sigma^{i} S_{i} e^{i(\phi_{i}^{S} + \delta_{i}^{S})}, \qquad P = \Sigma^{i} P_{i} e^{i(\phi_{i}^{P} + \delta_{i}^{P})}$$

Under CP transformation:

$$\bar{S} = -\Sigma^{i} S_{i} e^{i(-\phi_{i}^{S} + \delta_{i}^{S})}, \qquad \bar{P} = \Sigma^{i} P_{i} e^{i(-\phi_{i}^{P} + \delta_{i}^{P})}$$
If CP conserved: $S \stackrel{CP}{\Longrightarrow} - S$

$$P \stackrel{CP}{\Longrightarrow} P$$

$$\rho \stackrel{CP}{\Longrightarrow} \bar{\beta} = -\beta$$

2023/5/31

500 Publications of BESIII (Hyperon sector)

 $-\alpha$

CP observable in hyperon decay

John F. Donoghue Xiao-Gang He Sandip Pakvasa

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the CP-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and left-right-symmetric models of CP nonconservation.

PRD 34,833 1986

Not sensitive to CPV

Polarization of decayed baryon needs to be measured

Decay width difference

Decay parameter difference

Decay parameter difference

 Ξ^-, Ξ^0, Ω^- cascade decay

$$\Delta = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}} \approx \sqrt{2} \frac{T_{\frac{3}{2}}}{T_{\frac{1}{2}}} \sin \Delta_s \sin \phi_{CP}$$
$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \approx \tan \Delta_s \tan \phi_{CP}$$

$$B = \frac{\Gamma\beta + \Gamma\beta}{\Gamma\alpha - \overline{\Gamma}\overline{\alpha}} \approx \tan\phi_{CP}$$

Λ decay -5.4×10^{-7}

SM Prediction of

 $-0.5 imes 10^{-4}$

 3.0×10^{-3}

BESIII: a hyperon factory

10 billion J/ψ events collected:

- Large Br. in J/ψ decay
- Quantum entangled pair productions
- High efficiency, background free

Front. Phys. 12(5), 121301 (2017) Phys. Rev. D 100, 114005 (2019)

discovered(2001) discovered(1964) discovered(2019) no evidence (10^{-2}) Experiments B factory Fix targets LHCb Fix targets → BESIII?

				Detection	
	Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B~(\times 10^6)$	Efficiency	Number of reconstructed
	$J/\psi o \Lambda ar{\Lambda}$	1.61 ± 0.15	16.1 ± 1.5	40%	4500 X 10 ³
	$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9	25%	600 X 10 ³
	$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4	24%	640 X 10 ³
	$J/\psi \to \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5		
	$J/\psi \to \Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2		
	$J/\psi \to \Xi^0 \bar{\Xi}^0$	1.20 ± 0.24	12.0 ± 2.4	14%	670 X 10 ³
	$J/\psi \to \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0	19%	810 X 10 ³
	$J/\psi \to \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4		
	$J/\psi \to \Xi(1530)^- \bar{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5		
	$\psi(2S) \to \Omega^- \bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03		

events

 $0(10^8)$

10³

10⁶

10⁸

 $+ \Omega^{-}(sss) \operatorname{spin}{} - \frac{3}{2}$

2023/5/31

Polarized hyperon pairs produced in e^+e^- collisions

Two form factors are used to describe the production of hyperon pair: G_F, G_M

$$\alpha_{\psi} = \frac{s^2 |G_M|^2 - 4m^2 |G_E|^2}{s^2 |G_M|^2 + 4m^2 |G_E|^2}, \ \frac{G_M}{G_E} = \left| \frac{G_M}{G_E} \right| e^{-i\Delta\Phi}$$

- Angular distribution of $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha_{\psi} \cos^2 \theta$, $\alpha_{\psi} \in [-1.0, 1.0]$
- Unpolarized e^+e^- beams \Rightarrow transverse polarized hyperon (if $\Delta \Phi \neq 0$):

Recent results from BESIII

- $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}, \Lambda(\overline{\Lambda}) \rightarrow p\pi$
- Joint amplitude:

$$M = \frac{ie^2}{q^2} j_\mu \overline{u}(p_1) \left(F_1 \gamma_\mu + \frac{F_2}{2m} p_\nu \sigma^{\nu\mu} \gamma_5 \right) v(p_2)$$

• Differential cross section:

 $d\sigma \sim 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} + (\alpha_{\psi} + \cos^{2} \theta_{\Lambda}) s_{\Lambda}^{z} s_{\overline{\Lambda}}^{z} +$ $\sin^{2} \theta_{\Lambda} s_{\Lambda}^{x} s_{\overline{\Lambda}}^{x} - \alpha_{\psi} \sin^{2} \theta_{\Lambda} s_{\Lambda}^{y} s_{\overline{\Lambda}}^{y} + \sqrt{1 - \alpha_{\psi}^{2}} \cos\Delta\Phi \sin\theta_{\Lambda} \cos\theta_{\Lambda} (s_{\Lambda}^{x} s_{\overline{\Lambda}}^{z} +$ $s_{\Lambda}^{z} s_{\overline{\Lambda}}^{x}) + \sqrt{1 - \alpha_{\psi}^{2}} \sin\Delta\Phi \sin\theta_{\Lambda} \cos\theta_{\Lambda} (s_{\Lambda}^{y} + s_{\overline{\Lambda}}^{y})$ POLARIZATIONS

- The spin vector of Λ is denoted by s_{Λ}
- Only $\langle s^{\gamma} \rangle$ could be non-zero, if $\sin \Delta \Phi \neq 0$

Nuovo Cim. A 109, 241 (1996) Phys. Rev.185 D 75, 074026 (2007) Nucl. Phys. A190 771, 169 (2006) Phys. Lett. B 772, 16(2017)

$$e^+e^- \to J/\psi \to \Lambda\overline{\Lambda}, \Lambda(\overline{\Lambda}) \to p\pi$$

BESIII has publish 2 works based on 1.3 billion and 10 billion J/ψ data sample:

[1] 1.3 billion: Nature Phys.15(2019)631

[2] 10 billion: Phys.Rev.Lett. 129 (2022) 13, 131801

- Most precise values for Λ decay parameter
- One of the most precise *CP* test in the hyperon sector: $A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -0.0025 \pm 0.0046 \pm 0.0011$

Standard mode prediction : $A_{CP} \sim 10^{-4}$ (PRD 34, 833 (1986))

Par.	BESIII 10 billion [2]	BESIII 1.3 billion [1]
$\overline{lpha_{J/\psi}}$	$0.4748 \pm 0.0022 \pm 0.0031$	$0.461 \pm 0.006 \pm 0.007$
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.0066$	$0.740 \pm 0.010 \pm 0.009$
lpha	$0.7519 \pm 0.0036 \pm 0.0024$	$0.750 \pm 0.009 \pm 0.004$
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0030$	$-0.758 \pm 0.010 \pm 0.007$
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0012$	$0.006 \pm 0.012 \pm 0.007$
$lpha_{ m avg}$	$0.7542 \pm 0.0010 \pm 0.0024$	-

$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$$

• For the sequential weak decays, the formula of sequential decays is:

$$\mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{\mu, \bar{\nu} = 0}^{3} \underbrace{C_{\mu\bar{\nu}}}_{\mu', \bar{\nu}' = 0} \sum_{\mu', \bar{\nu}' = 0}^{3} \underbrace{a^{B_1}_{\mu\mu'} a^{\bar{B}_1}_{\bar{\nu}\bar{\nu}'} a^{B_2}_{\mu'0} a^{\bar{B}_2}_{\bar{\nu}'0}}_{\mathcal{W}(\bar{\boldsymbol{\xi}}, \boldsymbol{\omega}) = 0}$$

PRD99(2019)056008 PRD100(2019)114005

- Angular distribution $d\Gamma \propto W(\xi, \omega)$
 - ξ : 9 kinematic variables, denoted by 9 helicity angles
 - $\omega = (\alpha_{\psi}, \Delta \Phi, \alpha_{\Xi}, \alpha_{\Xi}, \phi_{\Xi}, \phi_{\Xi}, \alpha_{\Lambda}, \alpha_{\overline{\Lambda}})$: 8 free parameters

More parameters in sequential decay!

- Data sample: 1.3 billion J/ψ events.
- Final dataset: $73.2 \cdot 10^3$ events with 199 backgrounds.

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \overline{\Xi}^+, \Xi^- \rightarrow \Lambda(\rightarrow p\pi^-)\pi^- + c.c.$

Nature 60	<mark>6 (2022</mark>	2) 7912, 64-6
-----------	----------------------	---------------

	Parameter	This work	Previous result	
	a _w	0.586±0.012±0.010	0.58±0.04±0.08	
	ΔΦ	1.213±0.046±0.016 rad	-	First measurement of the Ξ^-
First direct and	a₌	-0.376±0.007±0.003	-0.401±0.010	$\int \phi dc a y$
simultaneously measurement	<i>ф≡</i>	$0.011 \pm 0.019 \pm 0.009 rad$	-0.037±0.014rad	
of the charged E decay	ā _Ξ	0.371±0.007±0.002	-	
parameters	$ar{\phi}_{\Xi}$	$-0.021 \pm 0.019 \pm 0.007 rad$	-	
	a _A	0.757±0.011±0.008	0.750±0.009±0.004	HyperCP: $\phi_{\Xi'HyperCP} = -0.042 \pm 0.011 \pm 0.011$
	ā _Λ	-0.763±0.011±0.007	-0.758±0.010±0.007	BESIII: $\langle \phi_{\Xi} \rangle = 0.016 \pm 0.014 \pm 0.007$
First measurement of weak	<mark>ξ</mark> _P −ξ _S	(1.2±3.4±0.8)×10 ⁻² rad	-	we obtain the same precision for
phase difference in E decay	$\delta_P - \delta_S$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10⁻²rad	of magnitude smaller data sample!
	A ^Ξ _{CP}	(6±13±6)×10 ⁻³	-	
Three independent <i>CP</i> tests	$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	-	HyperCP: PRL 93(2004) 011802
	A^{Λ}_{CP}	(-4±12±9)×10 ⁻³	(−6±12±7)×10 ⁻³	
	$\langle \phi_{\Xi} \rangle$	0.016±0.014±0.007rad		

Polarization behavior in different hyperon pair productions

500 Publications of BESIII (Hyperon sector)

2023/5/31

Study on hyperon rare decays

 $\Lambda \to n\gamma \text{ via } I/\psi \to (\Lambda \to p\pi)(\overline{\Lambda} \to \overline{n}\gamma) + \text{c. c.}$

PRL129, 212002 (2022)

1000

$\Sigma^+ \to p\gamma \text{ via } I/\psi \to (\Sigma^+ \to p\pi^0)(\bar{\Sigma}^- \to \bar{p}\gamma) + \text{c. c.}$

PRL130, 211901(2023)

$\Sigma^+ \to \Lambda e^+ \nu_{\rho} \text{ via } I/\psi \to \Sigma^+ \overline{\Sigma}^-$

Phys.Rev.D 107 (2023) 7, 072010

1600 (a) 1400 (b) 1200 (b) 1200 (c) 1000 (c) 100 MeV 800 (b) — Total PDFs - Total PDFs --- Signal PDF --- Signal PDF **BG A PDF BG A PDF** 200 BG B PDF BG B PDF 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 $\mathsf{E}^{\overline{\Lambda}}_{\vee}$ in $\overline{\Lambda}$ rest frame(GeV) E_{v}^{Λ} in Λ rest frame(GeV) Δ BESIII PDG ٠ ☆ VDM 0.5 PM I PM II NRCQM $\alpha_{\gamma}(\Lambda{\rightarrow}n\gamma)$ QM + BSU(3) 0 ★ ChPT **5.5**σ -0.5 -1 0 3 $BF(\Lambda \rightarrow n\gamma)(\times 10^{-3})$

1800F

Study on hyperon rare decays

First measurement of the absolute branching fraction of $\Lambda \rightarrow p\mu^- \bar{\nu}_{\mu}$

 $B(\Lambda \to p\mu^- \bar{\nu}_{\mu}) = (1.48 \pm 0.21 \pm 0.08) \times 10^{-4}$ $R^{\mu e} \equiv \frac{\Gamma(\Lambda \to p\mu^- \bar{\nu}_{\mu})}{\Gamma(\Lambda \to pe^- \bar{\nu}_e)} = 0.178 \pm 0.028$ consistent with SM prediction: 0.153 \pm 0.008

$$A_{CP} \equiv \frac{B(\Lambda \to p\mu^- \overline{\nu}_{\mu}) - B(\overline{\Lambda} \to \overline{p}\mu^+ \nu_{\mu})}{B(\Lambda \to p\mu^- \overline{\nu}_{\mu}) - B(\overline{\Lambda} \to \overline{p}\mu^+ \nu_{\mu})} = 0.02 \pm 0.14 \pm 0.02$$

 $B(\Lambda \rightarrow invisible) < 7.4 \times 10^{-5} (90\% \text{ CL})$ PRD 105, L071101 (2022) 70 ⊢^{×10³} 60 20.0 MeV - Data --- Signal Shape - Corrected Background Other Background 30 F Events / 05 10 10Ē 0<u></u> 0.6 E_{EMC} [GeV] 0.8 0.2 0.4 1 1.2 4.5 4.5 3.5 2.5 2.5 1.5 1.5 0.5 1.5 7.40 ×10⁻⁵ @ 90% C.I -2 2 Ω $B(\Lambda \rightarrow invisible) \times 10^{-4}$

Invisible decays: $\Lambda \rightarrow invisible$

$$\begin{split} \Delta S &= \Delta \text{Q violating process } \Xi^0 \to \Sigma^- e^+ \nu_e \\ B(\Xi^0 \to \Sigma^- e^+ \nu_e) < 1.6 \times 10^{-4} \ (90\% \text{ CL}) \end{split}$$

PRD 107, 012002 (2023)

Summary of BESIII achievement on hyperon decay

Summary of BESIII achievement on hyperon decay

	PRL 129, 131801(2022)	PRL 125,052004(2020)	Nature 606,64(2022)	arXiv:2305.09218v1
Parameters	$\Lambda\overline{\Lambda}$	$\Sigma^+\overline{\Sigma}^-$	Ξ-Ξ+	Ξ ⁰ Ξ ⁰
$lpha_{\Xi^-/\Xi^0}$	-	-	$-0.376 \pm 0.007 \pm 0.003$	$-0.3750 \pm 0.0034 \pm 0.0016$
$lpha_{\overline{\Xi}^+/\overline{\Xi}^0}$	-	-	$0.371 \pm 0.007 \pm 0.002$	$0.3790 \pm 0.0034 \pm 0.0021$
ϕ_{Ξ^-/Ξ^0}	-	-	$0.011 \pm 0.019 \pm 0.009$	0.0051 ± 0.0096 ± <mark>0.0018</mark>
ϕ_{Ξ^+/Ξ^0}	-	-	$-0.021 \pm 0.019 \pm 0.007$	$-0.0053 \pm 0.0097 \pm 0.0019$
$A_{CP}(\Xi^-/\Xi^0)$	-	-	$0.006 \pm 0.013 \pm 0.006$	$-0.0054 \pm 0.0065 \pm 0.0031$
$\Delta\phi_{CP}(\Xi^-/\Xi^0)$	-	-	$-0.005 \pm 0.014 \pm 0.003$	$-0.0001 \pm 0.0069 \pm 0.0009$
$\alpha_{\Lambda/\Sigma^+}$	$0.7519 \pm 0.0036 \pm 0.0024$	$-0.998 \pm 0.037 \pm 0.009$	$0.757 \pm 0.011 \pm 0.008$	0.7551 ± 0.0052 ± <mark>0.0023</mark>
$\alpha_{\overline{\Lambda}/\overline{\Sigma}}$ -	$-0.7559 \pm 0.0036 \pm 0.0030$	$0.990 \pm 0.037 \pm 0.011$	$-0.763 \pm 0.011 \pm 0.007$	$-0.7448 \pm 0.0052 \pm 0.0023$
$A_{CP}(\Lambda/\Sigma^+)$	$-0.0025 \pm 0.0046 \pm 0.0012$	$-0.004 \pm 0.037 \pm 0.010$	$-0.004 \pm 0.012 \pm 0.009$	$0.0069 \pm 0.0058 \pm 0.0018$

The most precise *CP* measurement at BESIII: $A_{CP}^{\Lambda} = -0.0025 \pm 0.0046 \pm 0.0012$ Systematic uncertainties are well controlled!

• Excellent performance of BESIII detectors.

2023/5/3

• Data-driven method to study data-MC inconsistency.

Hyperon physics in future plans

500 Publications of BESIII (Hyperon sector)

A novel method to study hyperon-nucleus interaction at BESIII !

arXiv:2304.13921(Accepted by PRL)

 $\Xi^0 n \to \Xi^- p$ is observed for the first time

The first study of hyperon–nucleon interaction in electron–positron collisions! More results are on the way.

Searching for hyperon EDM at BESIII

μ: magnetic dipole momentd: electric dipole moment

Non-zero EDM will violate *P* and *T* symmetry: *T* violation \leftrightarrow *CP* violation, if CPT holds.

Systematic measurement of the EDMs of the hyperon family!

Only the EDM of Λ in the hyperon family has been measured (with low precision). Based on massive quantum-correlated hyperon pairs, BESIII is expected to improve the measurement precision of the Λ EDM by a factor of **1000**, and provide the first measurement results of the EDMs of Σ , Ξ , Ω , and other hyperons

Summary and Outlooks

- Highlights of hyperon physics at BESIII:
 - Precision measurements of hyperon decay parameters, polarization and *CP* asymmetry:
 - complementary to CPV studies with Kaons
 - BESIII has already rewritten the PDG book for Λ and Ξ decays
 - results of Σ^{\pm} , Ξ with 10 billion J/ψ will be coming soon
 - Hyperon-nucleus interaction:
 - BESIII can provides unique high quality sources of (anti)-hyperon and \bar{n}
 - $YN, \overline{Y}N, NN, \overline{N}N$ interaction, hypernuclei
 - Hyperon electric dipole moments measurements
 - First measurements of Σ^+ , Ξ^- , Ξ^0 , Ω hyperons EDM
 - The sensitivity of the hyperon EDM can be reached at the order of 10^{-19}

www.thank you.com

1

1000

2023/5/31

EM form-factors and Helicity Amplitudes

Phys.Rev.D99,056008

$$h_{2} \equiv A_{1/2,-1/2} = A_{-1/2,1/2} = \sqrt{1 + \alpha_{\psi}} e^{-i\Delta \Phi}$$

$$h_{1} \equiv A_{1/2,1/2} = A_{-1/2,-1/2} = \sqrt{1 - \alpha_{\psi}} / \sqrt{2}$$

$$h_{2} = \frac{\sqrt{2s}}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{M}$$

$$h_{1} = \frac{2M}{\sqrt{s|G_{M}|^{2} + 4M^{2}|G_{E}|^{2}}} G_{E}$$

$$\frac{G_{E}}{G_{M}} = e^{i\Delta \Phi} \left| \frac{G_{E}}{G_{M}} \right|$$

where s is the square of $p_B + p_{\bar{B}}$ and M is the mass of $B(\bar{B})$.

CPV observables in $\Xi^- \rightarrow \Lambda \pi$ decay

Constraints from Kaon decays

He & Valencia PRD 52, 5257

CPV measurement in Kaon system strongly constrains NP in S-waves, but no Pwaves. Thus, searches of CPV in hyperon are complementary to those with Kaons.