

Highlight on R values and QCD

Xiaorong Zhou (on behalf of tau-QCD group) 2023.5.31, Beijing, IHEP

Tau-QCD related topics at BESIII

Some features:

- ➤ Two approaches used: ISR and energy scan
- \succ Focus on the low q², production thresholds of pairs production
- > Special request on the MC simulation, BEMS, theoretical inputs *etc*.

Dedicated data for Tau-QCD study

2011 tau scan: **11** days

2012 J/ψ phase scan: 3.05-3.10 GeV (**13** days); R scan: 2.2324, 2.4, 2.8, 3.4 GeV (**9** days)

2013-2014 R scan: 3.85-4.59 GeV, 104 points (45 days)

2015 R scan: 21 points from 2.0 to 3.08 GeV (**120** days)

2017 chic1 scan: 3.49-3.51 GeV (23 days)

2018 tau scan: **20** days

Precision Test of the SM

Free parameters of the SM

- 19 free parameters in SM that must be extracted from experimental measurements. •
- BESIII contributes to tau mass m_{τ} , QED running coupling constant evaluated at the • Z pole $\alpha(s)$, and SM calculation of muon anomalous magnetic moment a_{μ} . High precision measurement essential to test SM. Masses Couplings

Parameter	Value	Method	Parameter	Value	Method
m _u	1.9 MeV	Lattice	α	0.0073	non-collider +
m_d	4.4 MeV	Lattice			collider
ms	87 MeV	Lattice	G_F	1.17x10 ⁻⁵	Non-collider
m	1.3GeV	Collider	α_{s}	0.12	Lattice + collider
m _b	4.24 MeV	Collider	Flavour and CP violation		
m _t	173 GeV	Collider	Parameter	Value	Method
m,	511 keV	Non-collider	a low a		
111	106 MeV	Non-collider	θ_{12} (CKM)	13.1°	Collider
m _μ	10010101		θ_{23} (CKM)	2.4°	Collider
<i>m</i> ₇	1.78 GeV	Collider	θ_{12} (CKM)	0.20	Collider
mz	91.2 GeV	Collider	S/CKNA CDV/	0.005	Callidar
111	125 GeV	Collider	O (CKIVI-CPV)	0.995	Collider
I III IIII IIII IIIII IIIII IIIIIIIIII	120 000	connucr	θ (strong CP)	~0	Non-collider

τ mass measurement at BESIII

• Lepton universality test:

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{B(\tau \to e\nu\bar{\nu})}{B(\mu \to e\nu\bar{\nu})}$$

- Methods
 - Pseudomass technique: ARGUS, OPAL, BELLE and BABAR
 - Threshold scan method : DELCO, BES (92, 96), KEDR, BESIII
- BESIII obtains the most precise τ mass:
 - $m_{\tau} = 1776.91 \pm 0.12^{+0.10}_{-0.13} \text{ MeV/c}^2$

 $(g_{\tau} / g_{\mu})^2 = 1.0016 \pm 0.0042$ agrees at the 0.4 σ level !

• New round of τ mass measurement expects a precision of less than 80 keV

Muon anomalous magnetic moment a_{μ}

 4.2σ discrepancy => Strong indication for physics beyond the SM?

- SM prediction: $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{Weak} + a_{\mu}^{Had}$
 - Hadronic Vacuum Polarization (HVP) and Light-by-Light (HLbL) in a_{μ}^{Had} dominate uncertainty
- The $\pi^+\pi^-$ channel accounts for 75% of the full a_{μ}^{Had}
 - Typical uncertainty around 0.6%-1.0%.
 - Large discrepancy among different experiments

BESIII contributions to a_{μ}^{HVP}

- $e^+e^- \rightarrow \pi^+\pi^-$ at BESIII with ISR method:
 - Systematic uncertainty: 0.9%.
 - Dominate uncertainty: luminosity (0.5%), radiator function (0.5%)

PLB 753 (2016) 629-638, *PLB* 812 (2021) 135982 (erratum)

Source	Uncertainty
	(%)
Photon efficiency correction	0.2
Pion tracking efficiency correction	0.3
Pion ANN efficiency correction	0.2
Pion e-PID efficiency correction	0.2
ANN	negl.
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
Vacuum polarization correction δ_{vac}	0.2
Radiator function	0.5
Luminosity \mathcal{L}	0.5
Sum	0.9

- With 20 fb⁻¹ $\psi(3770)$ data
 - New technique applied by measuring cross section ratio of $e^+e^- \rightarrow \pi^+\pi^-$ to $e^+e^- \rightarrow \mu^+\mu^-$
 - Uncertainty from luminosity, radiator function, VP correction will be canceled
 - Expect systematic uncertainty: 0.5%

QED running coupling constant $\alpha(s)$

- $\alpha(s)$ is one of the most important QED parameters
- The contribution to $\Delta \alpha(s)$ can be distinguished to three pieces

$$\Delta \alpha(s) = 1 - \alpha(0) / \alpha(s) = \Delta \alpha_{\text{lepton}}(s) + \Delta \alpha_{\text{had}}^{(5)}(s) + \Delta \alpha_{\text{top}}(s)$$

• $\Delta \alpha_{had}^{(5)}(s)$ should be calculated with R value:

$$\Delta \alpha_{\text{had}}^{(5)}(s) = -\frac{\alpha s}{3\pi} \operatorname{Re} \int_{E_{\text{th}}}^{\infty} \mathrm{d}s' \frac{R(s')}{s'(s'-s-i\varepsilon)}$$

Eur. Phys. J. C 80, 241 (2020)

Source	Contribution($\times 10^{-4}$)
$\Delta \alpha_{\text{lepton}}(M_Z^2)$	314.979 ± 0.002
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	276.0 ± 1.0
$\Delta \alpha_{\rm top}(M_Z^2)$	-0.7180 ± 0.0054

R value measurement at **BESIII**

• Precision measurements of the R contributes to SM prediction of a_{μ}^{HVP} and determination of the QED running coupling constant $\alpha(s)$ evaluated at the Z pole.

- R value measured at 14 c.m. energies from 2.2324 to 3.671 GeV, with accuracy better than 2.6% below 3.1 GeV and 3.0% above.
- Larger than the pQCD prediction by 2.7σ in $3.4 \sim 3.6$ GeV.

Hadron Structures

Hadron structures

- Nucleons are composite objects with inner structure.
- At low Q, perturbative QCD not possible (expansion of coupling constant α_s)

 \Rightarrow Nucleon structure must be measured in experiments!

 BESIII contribute to the nucleon structure by studying fragmentation functions (=>help extract the structure function) and electromagnetic form factors

Fragmentation Functions

- Fragmentation function : probability that hadron *h* is found in the debris of a hadron carrying a fraction of parton's momentum
- Help understand confinement of QCD and essential input to the structure function of nucleons

- Fragmentation functions can be studied at BESIII:
 - \checkmark Unpolarized fragmentation function
 - ✓ Collins fragmentation function (chiral odd)
 - Di-hadron fragmentation function

Electromagnetic Form Factors

- Electromagnetic Form Factors are fundamental properties of the nucleon
 - Connected to charge, magnetization distribution
 - Crucial testing ground for models of the nucleon internal structure

The nucleon electromagnetic vertex Γ_{μ} describing the hadron current: $\Gamma_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_p}F_2(q^2)$

Sachs FFs: $G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2), \ G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$

Baryon EMFFs at BESIII

Baryon EMFFs at BESIII

- > Abnormal threshold effects observed in various baryon pair production: $p\bar{p}$, $\Lambda\bar{\Lambda}$, $\Lambda_c^+\bar{\Lambda}_c^-$...
- > Oscillation structures observed in $p\bar{p}$, $n\bar{n}$
- \succ |G_E/G_M| ratio significantly larger than 1 at low beta for *p*, Λ⁺_c, Σ⁺, indicating large D-wave near threshold
- > Relative phase angle of form factor $\Delta \phi(\sin \Delta \phi)$ measured for Λ , Λ_c^+

Hadron Spectroscopy

Light flavor mesons

\Box Experimental information of $\phi(2170)$

- Limited decay modes
- Inconsistence on Mass & Width
- **Theoretical** explain of $\phi(2170)$
 - \succ ssg hybrid
 - \succ 2³ D_1 or 3³ S_1 s \overline{s}
 - > Tetraquark
 - $\succ \text{ Molecular state } \Lambda \overline{\Lambda}$
 - ▶ ...

□ Rich vector resonances around 2.0 GeV:

- → At BESIII, $\phi(2170)$ is systematically studied by K^+K^- , K_sK_L , $K^+K^-\pi\pi$, $\phi\eta^{(\prime)}$, $K^+K^-\pi^0$...
- $\succ \omega^*$ is observed in $\omega \eta$, $\omega \pi^0 \pi^0$ and $\omega \pi^+ \pi^- \dots$
- $\succ \rho^*$ is observed in $\omega \pi^0, \eta' \pi^+ \pi^- \dots$

PDG2018 Ø(2170) DECAY MODES				
	Mode	Fraction (Γ_i/Γ)		
Г1	$e^+ e^-$	seen		
Γ2	$\phi\eta$			
Г ₃	$\phi \pi \pi$			
Г4	$\phi f_0(980)$	seen		
Γ ₅	$K^+ K^- \pi^+ \pi^-$			
Г ₆	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^+ \pi^-$	seen		
Γ ₇	$\mathcal{K}^+ \mathcal{K}^- \pi^0 \pi^0$			
Г ₈	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^0 \pi^0$	seen		
Г9	$K^{*0} K^{\pm} \pi^{\mp}$	not seen		
Γ ₁₀	$K^*(892)^0 \overline{K}^*(892)^0$	not seen		

Light flavor vector states as **BESIII**

Light flavor vector states as **BESIII**

Direct C-even production in e^+e^- **annihilation**

- The C-even states, *i.e.* η , $f_1(1285)$, χ_c , X(3872), can be produced directly from e^+e^- annihilation through two virtual photons or neutral current reaction.
- Revisit calculation with large interference effects distortion of the total cross section (*PRD 94, 034033 (2016*)).
- χ_{c1} is observed with significance over 5σ . First observation of a C-even state in e^+e^- annihilation.

 $e^+e^- \rightarrow 1^{++}$

Xc1

Phase in strong and EM amplitudes

(a) e⁺e⁻ → J/ψ → hadrons via strong mechanism;
(b) e⁺e⁻ → J/ψ → hadrons via EM mechanism;
(c) non-resonant e⁺e⁻ → hadrons via a virtual photon.

$$\sigma_{\text{Born}} = |A_{3g} + A_{\gamma} + A_{\text{cont}}|^{2}$$
$$= ||A_{3g}|e^{i\Phi_{3g,\text{EM}}} + |A_{\gamma}|e^{i\Phi_{\gamma,\text{cont.}}} + |A_{\text{cont.}}||^{2}$$

• First measurement of the $\Phi_{3g,EM}$ in J/ψ decay using multihadron final state with the production line-shape.

PLB 791, 375(2019)

	$\Phi_{g,EM}$	$\mathcal{B}_{5\pi}$ (%)	χ^2/ndf
Solution I	$(84.9\pm3.6)^\circ$	4.73 ± 0.44	11.62/12
Solution II	$(-84.7 \pm 3.1)^{\circ}$	$\textbf{4.85} \pm \textbf{0.45}$	11.62/12

Summary

- **BESIII** is a good platform for the nonperturbative QCD with the unique energy region.
- BESIII has a lot progress in the QCD researches at low q² to precisely test the SM, study hadron structure and spectroscopy, etc.

• There is still results which cannot be well explained. Work more closely with theorist is necessary and more data at low q² is required.