

Top Quark Physics At The CEPC

Physics Department, Mohammed V University, Rabat

Mustapha Biyabi

Event Display

Events visualization in parallel To detector geometry :

Goal

□ The <u>config file</u> for the semi leptonic channel :

$e^-e^+ \longrightarrow t \tilde{t}$, $(t \ge w^+b, w^+ \ge l^+v)$, $(\tilde{t} \ge w^- \tilde{b}, w^- \ge 2 \text{ guark jets})$

☐ The Data (Signal samples) :

COLLECTION NAME	COLLECTION TYPE	NUMBER OF ELEMENTS
AncientPF0s	ReconstructedParticle	141
ArborCharged	Cluster	36
ArborNeutral	Cluster	104
ArborPF0s	ReconstructedParticle	141
CluAB 1st	Cluster	166
ClupatraTrackSegments	Track	99
ClupatraTracks	Track	50
ClusterChargedCore	Cluster	31
EHBushes	Cluster	255
ForwardTracks	Track	Θ
LSBranches	Cluster	1355
MCParticle	MCParticle	1755
MCParticlesSkimmed	MCParticle	313
MarlinTrkTracks	Track	41
RecoMCTruthLink	LCRelation	140
SiTracks	Track	35
SubsetTracks	Track	35

Marlin Processor

In order to use the data being generated/reconstructed To produce the root file, we need to :

- □ Isolate leptons which we want using IsolatedLeptonFinderProcessor.
- Cluster all the remain PFOs into <u>4 jets</u> and tag their flavors using LcfiplusProcessor.
- Classify final state particles using FSClasserProcessor, i.e the final state particles typically include a combination of charged and neutral hadrons, photons, and leptons.
- In this we need to use Marlin software which is a simple C ++ application framework for the analysis of LCIO data that provides a platform for the distributed development of new reconstruction algorithms.

Marlin applications are entirely configured through xml steering files.

Steering File

The names of the processors which are to be executed are listed using the keyword processor :

After setting the input files, IsolatedLeptonFinderProcessor Collections :

<processor name=</pre> type= 5 ←Input collection of ReconstructedParticles → lcioInType="Re >ArborPFOs </parameter> <parameter name="InputCollection")</pre> type= \leftarrow Output collection of isolated leptons \rightarrow >Isoleps </parameter> " type="string" lcioOutType="Re <parameter name=</pre> $\not\in$ Copy of input collection but without the isolated leptons \rightarrow >RemainPFOs </parameter> lcioOutType= <parameter name=""" type="st

Steering File

For the Vertex Finder and its parameters :

```
cessor name=
                                 type=
                                                         > PrimaryVertexFinder BuildUpVertex </parameter>
        <parameter name=
                                                                 value= 1 > 4 true for ILD \rightarrow
        <parameter name=</pre>
                                                      type="int
                                                      type="int" value="0" \land \not\leftarrow false for non-updative PandoraPFOs \rightarrow
        <parameter name=
                                                          value= ∧ <!- Track hit ordering: 0=ILD-LOI,SID-DBD, 1=ILD-DBD →
                                              type=
        <parameter name=</pre>
                                              type="int"
        <parameter name=""
        <parameter name=</pre>
                                                                               N
                                                          type="s
        <parameter name=</pre>
        <parameter name=
        <parameter name=
                                                                    type="strung
```

Define Jet Clustering&FlavorTag Processor and its Parameters :

```
type=
cessor name=
        <parameter name="Algorithms" type="stringVec"> JetClustering JetVertexRefiner FlavorTag ReadMVA
        value="RemainPFOs" \land \land \land input PFO collection \rightarrow
        <parameter name=</pre>
                                            type="string"
                                                           \land \in MC info not used \rightarrow
                                                value="0"
        <parameter name=</pre>
                                    type= int
                                            type="string
                                                           value= \land \notin not used \rightarrow
        <parameter name=</pre>
                                                           value= \land \not \leftarrow \rightarrow not used \rightarrow
        <parameter name=
                                            type="string"
                                                       type="int" value= 1^{1} \land <!-- true for ILD \rightarrow
        <parameter name=
                                                       type= int value= 0^{1}/2 <!-- false for non-updative PandoraPFOs \rightarrow
         <parameter name=
                                                           value= 1 ∧ <-- Track hit ordering: 0=ILD-LOI,SID-DBD, 1=ILD-DBD →
         <parameter name=
                                               type=
```


✓ For the tag flavour we specifie the Collections :

- The name of the book containing the BDT training information ("FlavorTag.BookName").
- The "FlavorTag.PIDAlgo" parameter specifies the type of flavor tagging algorithm to be used (LCFIPlus).

ng" value= <parameter name= type= \wedge value= <parameter name= A type= <parameter name=</pre> value= type= value="lcfublus" <parameter name=</pre> type= a value= type= value= <parameter name= type=

Specifies the name of the file containing the **PDFs** for impact parameters (d0)/z0), which are used to calculate the **likelihood ratio** for each flavor.

FSClasser_Processor

• Specify the input Collections :

 Specify the possible final states : «Exclusive» : we're not considering any undetected particles such as neutrinos that may be produced in the final state.

<parameter name="FS144" type="string"> EXC4_0001000 </parameter>
<parameter name="FS145" type="string"> EXC4_0000010</parameter>

FSClasser Processor

Specify the Parameters :

<parameter< th=""><th>name=</th><th></th><th>type=</th><th></th><th></th><th>1 <th>ameter></th></th></parameter<>	name=		type=			1 <th>ameter></th>	ameter>
<parameter< p=""></parameter<>	name=	ShowME	type=			0 <td>ameter></td>	ameter>
<parameter< p=""></parameter<>	name=		type="	string	- 32	4	
<pre><parameter< pre=""></parameter<></pre>	name=		type=	string	÷.	1	<pre></pre>
<parameter< p=""></parameter<>	name=		type=		5	Θ	<pre></pre>
<pre><parameter< pre=""></parameter<></pre>	name=		type=		>	1	<pre></pre>
<parameter< p=""></parameter<>	name=		type=		">	1	<pre></pre>
<parameter< p=""></parameter<>	name=		type=		*	1	<pre></pre>
<parameter< p=""></parameter<>	name=		type=		>	Θ	<pre></pre>
<parameter< td=""><td>name=</td><td>LinearSphericity"</td><td>type=</td><td></td><td>></td><td>1</td><td><pre></pre></td></parameter<>	name=	LinearSphericity"	type=		>	1	<pre></pre>
<pre><parameter< pre=""></parameter<></pre>	name=		type=	string	3	1.0	<pre></pre>
<pre><parameter< pre=""></parameter<></pre>	name=		type=		5	360.0	<pre></pre>

• MC Events Comparaison to Reconstruted ones ! ("matchMc")

recon object	t is	11,	mctruth	is	22
recon object	t is	2112,	mctruth	is	22
recon object	t is	2112,	mctruth	is	22
recon object	t is	2112,	mctruth	is	22
recon object	t is	-2112,	mctruth	is	22
recon object	t is	130,	mctruth	is	22
recon object	t is	130,	mctruth	is	22
recon object	t is	2112,	mctruth	is	22
recon object	t is	130,	mctruth	is	22
[VERBOSE "I	4yISOL	atedLepto	onFinderF	Proce	ssor"] Lepton not from W+ boson decay.
neutral pano	lora=50	91			
recon object	t is	130,	mctruth	is	22
recon object	t is	211,	mctruth	is	22
recon object	t is	130,	mctruth	is	22
recon object	t is	-211,	mctruth	is	22
recon object	t is	2112,	mctruth	is	22

Results

Q Running the steering file with Marlin command Yields : Marlin ttbar_semileptonic.xml

	EXC4_0001000			
Θ)	Input Number of Evts	di i	14000	100.00%
1)	nChrg protection Cut		14000	100.00%
2)	nCombo uplimit protect	:	14000	100.00%
3)	nCombo greater than 0	-	5865	41.89%
4)	Before E and P Cut	- - -	6126	104.45%
5)	Missing Energy Cut	:	6126	100.00%
5)	Missing Momentum Cut	:	6126	100.00%
7)	Missing Mass Cut	:	5468	89.26%
3)	Raw 4-Momentum Cut	4	5468	100.00%
9)	No of Filling Entries	:	5468	100.00%
	EXC4 0000010			
Ð.)	Input Number of Evts	21	14000	100.00%
1)	nChrg protection Cut		14000	100.00%
2)	nCombo uplimit protect	÷.	14000	100.00%
3)	nCombo greater than 0	:	4862	34.73%
1)	Before E and P Cut	1	5273	108.45%
5)	Missing Energy Cut	:	5273	100.00%
5)	Missing Momentum Cut	:	5273	100.00%
7)	Missing Mass Cut	:	4814	91.30%
B)	Raw 4-Momentum Cut	-	4814	100.00%
9)	No of Filling Entries	:	4814	100.00%
E	vc4 eeeleee fill pumber .		5469	
E.			1014	

Lepton Isolation

- □ The lepton selected was assumed to be decaying from the W boson :
- □ Since neutrinos are not directly reconstructed as separate particles !
- □ The tree associated to one *muon and 4 jets* being produced is **«ntEXC4_0001000»**:

Lepton Isolation

□ The Total momentum distribution,

□ The rapidity of a reconstructed particle : describes how far the particle is from the *beam axis* in the direction of its motion.

Number/Mass of Jets

Jets B Tagging

Top quark Mass

• The Reconstructed Top Quark Mass : check the Lepton isolation efficiency !

• The larger the sample size, the smaller the statistical uncertainty on the measurement !

Back Up Slides

Alternative Way

- The alternative way is to remove all leptons in order for the jet clustering algorithms to work properly.
- First, isolate all leptons and put them in one collection, and put all the remaining particles in another collection.
- Then, produce two additional collections: one will contain the lepton with the highest momentum, and the other will contain all the remaining PFOs without the isolated lepton.

• The reconstructed mass of top quark :

