

## The reference AN



| CADI       | Analysis note | total                                                                                                                                  |
|------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
| BPH-11-021 | AN-12-222     | Measurement of the Prompt Double J/ $\psi$ Production Cross Section in pp Collisions at $\sqrt{s}$ = 7 TeV                             |
| BPH-14-008 | AN-14-138     | Observation of Y(1S) pair production at CMS                                                                                            |
| BPH-18-002 | AN-17-341     | Search for a light resonance decaying to $Y(1S)\mu+\mu-$ , and measurement of the $Y(1S)$ pair production cross section with 2016 data |





## Acceptance event by event Corrector

• The acceptance correction  $a_i$  for a given event *i* is the number of times the resulting decay muons pass the muon acceptance criteria,  $N_{acc}$ , divided by the total number of trials for the event,  $N_{tot}$ :  $a_i = N_{acc}/N_{tot}$ 

≻Use the closure test get the acceptance systematics(BPH-11-021, BPH-14-008, BPH-18-002)

- For each sample of  $N_j$  events within the J/ $\psi$  acceptance region
- Calculate the corrected number of signal events within the J/ $\psi$  acceptance:  $N'_j = \sum_i 1/a_i$
- Systematics uncertainty is calculate as :Error =  $|N'_j N_j|/N'_j + N_j$ (BPH-11-021) or Error =  $|N'_j - N_j|/N_j$ (BPH-14-008)

➢Efficiencies event by event Corrector

- BPH-11-021 and BPH-14-008 efficiencies corrector method are different from us
- BPH-18-002 efficiencies corrector are same as us and it also use the closure test get the efficiencies systematics