

Quantum Tracking for Future Colliders

Quantum Computing & Machine Learning Workshop, August 11-14, 2023, Shandong University

大川 (Okawa) 英希 (Hideki)

中国科学院高能物理研究所 (Institute of High Energy Physics, CAS)

Track Reconstruction

- Measuring curvature of particle trajectory bent in a magnetic field will provide momentum.
- Particle trajectory (track) will be reconstructed from hits in the silicon detectors (have many irrelevant ٠ hits from secondary particles)
- One of the most crucial reconstruction in collider experiments. • 大川英希 Quantum Computing & Machine Learning Workshop

High Luminosity LHC & Beyond

- At the HL-LHC, we will enter the "Exa-byte" era.
 Annual computing cost will increase by a factor of 10-20
- <u>Without various innovations, the experiment</u> will not be able to operate. GPUs and other state-of-the-art technologies will be the baseline at the HL-LHC.
- Quantum computing may bring another "leap".
- Two of the highly CPU consuming components: (1) track reconstruction for both data/simulation & (2) simulation of shower development in the calorimeter.
 - Collaborative projects w/ DESY. I will only cover tracking in this talk. Xiaozhong Huang will present the latter tomorrow.
- Tackling these challenges will also be useful for other future colliders, such as CEPC & SppC etc.

Track Reconstruction at LHC & HL-LHC

ATL-PHYS-PUB-2019-041 Time/Event [a.u.] CMS Simulation, vs = 13 TeV, tt + PU, BX=25ns 450⊦ HS06 × seconds per Event Full Reco Current Track Reco Current ATLAS Simulation Preliminary 400 Full Reco Run1 --- Track Reco Run1 ITk Layout, tt events PU140 350 - ----- Total ID Run-2 Reconstruction -50 ------ Track Finding (Run-2) 300 ------ Ambiguity Resolution (Run-2) 40 250E 200E 30-150⊨ 20 100E **PU70 50** 10 PU40 **PU25** 50 100 150 200 <µ> Luminosity [1034 cm-2 s-1]

	Run 1	Run 2	HL-LHC
μ	21	40	150-200
Tracks	~280	~600	~7-10k

- At the HL-LHC, additional interactions per bunch crossing becomes exceedingly high & <u>CPU time</u> <u>blows up with more pileup</u>.
- GPU & ML-based approaches could be considered as a baseline, but quantum ML may play an important role.

https://cds.cern.ch/record/1966040

Classical Benchmark: Kalman Filter

Track finding

Track fitting

From ACTS website https://acts.readthed ocs.io In high energy collider experiments, Kalman Filter technique (e.g. implemented in A Common Tracking Software [ACTS]) has been often used as a standard algorithm.

 Seeding from the inner layers, extrapolated to predict the next hit & iterated to find the best quality combination.

Classical ML Approaches

- There are also studies using CNN & Point Net at BES-III
- Silicon hits can be regarded as "nodes" & connected segments as "edges"
- Computing time scales linearly with number of tracks
 大川英希
 Quantum Computing & Machine Learning Workshop

Quantum Approach: QUBO

F. Bapst et al. Comp. Soft. Big Sci. 4 (2019) 1.

- $= -S_{ii}$ (if two hits are shared)
- Triplets (segments w/ 3 hits) are formed from doublets (segments w/ 2 hits).
- Triplets are used to reconstruct tracks & can be regarded as a guadratic unconstrained **binary optimization (QUBO)** problem. (QUBO matrices for tracking is generally sparse)
- Minimizing QUBO is equivalent to searching for the ground state of the Hamiltonian.

Quantum Annealing Approach

- Quantum annealer looks for the global minimum of a given function with quantum tunneling: a natural machine to search for the ground state of a Hamiltonian.
- D-Wave currently provides 5000+ qubit service (7440 qubits may be available in 2023-2024).
- Pros: High number of qubits available (concept fundamentally different from quantum gates).
- Cons: Can only run QUBO problems. Also, not all qubits are available for fully connected graphs (only a few hundred qubits).
- Simulator studies can be pursued in local machines as well as at the IHEP platform (Yujiang Bi's talk)

Previous Studies w/ Q. Annealing

- Previous studies w/ 1000-qubit machine show that efficiency is almost stable w/ # of particles, but purity (precision) degrades.
- Simulator provides consistent results w/ hardware!

大川英希

 There are also ongoing studies in LHC-ATLAS experiment implementing GNN w/ annealers.

Quantum Computing & Machine Learning Workshop

Previous DESY Studies

• QUBO can be mapped to Ising Hamiltonian and be solved using Variational Quantum Eigensolver (VQE) $\mathcal{H} = -\sum \sum \bar{b}_{nm}\sigma_n^x \sigma_m^x - \sum \bar{a}_n \sigma_n^x$ or Quantum Approximate Optimization Algorithm (QAOA) w/ quantum gates.

- Previous LUXE studies considered TwoLocal ansatz w/ R_y gates & circular CNOT entangling pattern w/ IBM (A. Crippa et al., arXiv:2304.01690, L.Funcke et al., arXiv:2202.06874)
- QAOA did not perform well & optimization was left for future studies. \rightarrow A scope of this talk

LUXE as a Benchmark

- LUXE (Laser Und XFEL Experiment)
 - QED studies under the strong-field regime (i.e. non-perturbative)
 - Exploits European XFEL electron beam and high-power laser
 - Also searches for new physics (e.g. ALP)

QUBO from LUXE Simulation

- DESY team provided a test QUBO benchmark for 131 qubits that would fit in high qubit machines (e.g. quafu 136). → ~3x10³⁹ possible solutions
- A simulated event from LUXE experiment; originally 10500 particles, a subset of 13 tracks chosen from the densest region (thus a challenging condition).
- **QUBO matrix is pretty sparse**, as is the nature of collider experiments & tracking

QAOA in OriginQ (本源)

- VQE & QAOA libraries implemented in pyqpanda-algorithm by OriginQ (本源).
- Adopts Quantum Alternative Operator Ansatz for QAOA.
- Utilizes CVaR loss function optimization (P. Barkoutsos et al., Quantum, 2020, 4: 256)
- 6 qubit machine (Wu-Yuan) is used for the real hardware computation in this talk.

An example of circuits from the actual run

Sub-QUBOs

- Number of qubits required is determined by the number of triplet candidates → Obviously cannot cover the full QUBO for tracking in the NISQ era
- QUBO is split into sub-QUBOs of size N (N=7 in previous LUXE studies for IBM machine).
 Here, I used N=6 to match with OriginQ hardware.

- There are various sub-QUBO algorithms proposed: qbsolv (now moved to dwave-hybrid library), for example.
- I adopted a sub-QUBO method using multiple solution instances from Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606.

Multiple Solution Instances

- 3 parameters (N_I, N_E, N_S) in this sub-QUBO method.
- Extract N_I quasi-optimal solutions from full-QUBO classically.
- Randomly select N_s solution instances from N_l .
- Focus on particular binary variable x_i. Rank them in accordance to how much they vary over N_S solution instances. Highly varying x_i will be included in the sub-QUBO model.
- Pick-up process of N_S solution from quantum computing is repeated N_E times & N_E sub-QUBO models are considered.
- Returns a pool of N_I solutions & the best solution will be chosen.

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

Preliminary sub-QUBO Results

- Ran 40 shots to compare the performance and stability. 3 layers used in QAOA.
- No significant dependence on (N_I, N_E, N_S) but slightly better & smaller fluctuations with larger parameters. Compatible performance between OriginQ simulator & actual hardware!
- Visible improvement w/ sub-QUBO compared to the simulated annealing only!

WIP: Triplet Efficiency & Fake Rate

- Evaluated triplet efficiency & fake rate.
- Only 1 event w/ 13 true tracks (i.e. 26 true triplets).
- Relatively low eff. but likely reasonable in the very dense conditions (see p.10).
- Fake rate roughly compatible w/ the various algorithms in the previous LUXE studies.
- Need detailed optimization & more data to conclude.

Quantum Computing & Machine Learning Workshop

Near Future Plans

- Tracking definitely requires high-qubit machines:
 - Interested in higher qubit machines from OriginQ (本源)
 - Also currently iterating with quafu experts to run QAOA on 136-qubit machine.
 - I'm happy to chat for any other options in China ③
- Further investigations on parameter optimization in VQE & QAOA as well as in QUBO & sub-QUBO algorithm.
- Look into more datasets & algorithms (e.g. QGNN) to pursue detailed performance studies
 - Publicly available tracking samples w/ HL-LHC conditions
 - CEPC simulation samples

Summary

- Tracking & calorimeter simulation are highly CPU-consuming tasks in the HL-LHC era & beyond. Classical ML methods are bringing in promising improvement.
- Another leap from quantum machine learning would be highly exciting.
- Pursuing international collaboration w/ DESY & exploiting opportunities with Chinese quantum computers & cloud services.
- Presented some preliminary studies on the quantum tracking using OriginQ simulator & real hardware. The sub-QUBO model presented here shows promising performance.
- (Also working on QGAN for calorimeter simulation w/ OriginQ machine; not presented today)
- Further investigations are ongoing. Stay tuned!

谢谢! Thank you for listening! 非常感谢本源和Quafu专家老师们的反馈和建议!

Backup

QUBO = $a_i x_i +$ $b_{ij}x_ix_j$

Multiple Solution Instances

Algorithm 2. Proposed Hybrid Annealing Method			
1: procedure Proposed method with multi-instances			
2: for $(i = 1; i \le N_I; i + +)$ do			
3: $X_i \leftarrow \text{Initialize}(\text{QUBO})$			
4: Pool \leftarrow AddInstancePool(Pool, X_i)			
5: $X_{best} \leftarrow \text{FindBest(Pool)}$			
6: while not converged do			
7: for $(i = 1; i \le N_I; i + +)$ do			
8: $X_i \leftarrow \text{Optimize}(\text{QUBO}, X_i)$			
Using a classical comp	outer		
9: for $(i = 1; i \le N_E; i + +)$ do			
10: $X_1, X_2, \dots, X_{N_S} \leftarrow \text{SelectInstance(Pool, N_S)}$			
11: for $(j = 1; j \le n; j + +)$ do			
12: for $(k = 1; k \le N_S; k + +)$ do			
13: $c_j \leftarrow c_j + x_{k,j}$			
14: $d_j \leftarrow c_j - \frac{N_S}{2} $			
15: subQUBO \leftarrow Extract(ArgSort(d_1, d_2, \cdots, d_n), m, X_t)		
16: $X' \leftarrow \text{Optimize(subQUBO, } X_t)$			
Using an Ising mac	hine		
17: Pool \leftarrow AddInstancePool(Pool, X')			
18: $X_{best} \leftarrow \text{FindBest(Pool)}$			
19: Pool \leftarrow ArrangeInstancePool(Pool, N_I)			
20: return $f(X_{best}), \overline{X}_{best}$			

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

Algorithm 3. Random Method			
1:	procedure Random method		
2:	$X \leftarrow \text{Initialize}(\text{QUBO})$		
3:	$X_{best} \leftarrow X$		
4:	while not converged do		
5:	$X \leftarrow \text{TabuSeach}(\text{QUBO}, X)$		
6:	$subQUBO \leftarrow RandomExtract(QUBO, m, X)$		
7:	$X \leftarrow \text{Optimize}(\text{subQUBO}, X)$		
8:	if $f(X) < f(X_{best})$ then		
9:	$X_{heat} \leftarrow X$		

10: return $f(X_{best}), X_{best}$

Algorithm 4. Qbsolv[10]

1: procedure QBSOLV

- 2: $X \leftarrow \text{Initialize}(\text{QUBO})$
- 3: $X_{best} \leftarrow \text{TabuSeach}(\text{QUBO}, X)$
- 4: index \leftarrow OrderByImpact(QUBO, X_{best})
- 5: while not converged do
- 6: **for** (i = 0; i < Size(QUBO); i + = Size(subQUBO)) **do** 7: subOUBO \leftarrow Decompose(OUBO.
- subQUBO \leftarrow Decompose(QUBO, index[i : i+Size(subQUBO)-1], X_{best})
- 8: $subX \leftarrow Optimize(subQUBO, X_{best})$
- 9: $X[index[i:i+Size(subQUBO)-1]] \leftarrow subX$
- 10: $X \leftarrow \text{TabuSearch}(\text{QUBO}, X)$
- 11: $index \leftarrow OrderByImpact(QUBO, X)$
- 12: **if** $f(X) < f(X_{best})$ then
- 13: $X_{best} \leftarrow X$
- 14: return $f(X_{best}), X_{best}$

Yee Chin Yapp

LUXE

Quantum Computing & Machine Learning Workshop