Quantum computing for non-perturbative high-energy nuclear physics

Dan-Bo Zhang

South China Normal University

QuNu Collaboration

Tianyin Li, Xudan Xie, Xingyu Guo, Wai Kin Lai, Xiaohui Liu, Enke Wang, Hongxi Xing, Dan-Bo Zhang, Shiliang Zhu

Quantum Computing and Machine Learning Workshop

Non-perturbative aspects

confinement of quarks

QCD at finite density & finite temperature

POTODO

Baryon density

Deep inelastic scattering (parton distribution function)

Real-time evolution of the universe

quantum computing

• in a word, directly perform calculation of quantum mechanics on quantum hardware of qubits

 $\langle \mathbf{M}
angle = \langle \psi(t) | \mathbf{M} | \psi(t)
angle \qquad | \psi(t)
angle = e^{-iHt} | \psi(0)
angle$

- quantum simulation: framework of Hamiltonian & quantum states
- basically, prepare quantum states and do some measurements
- technically, controllable or programmable & quantum algorithm

Nuclear matter in the eye of an artist

QC for dynamical properties for nuclear structure

parton distribution functions (PDFs)

Parton in hadron

Fragmentation function (FFs)

Hadron in parton

in preparation

PDFs and FFs

Operator definition of PDF and FF

PDF
$$f_{q/h}(x) = \int \frac{dz}{4\pi} e^{-ixM_h z}$$

 $\times \langle h | e^{iHt} \bar{\psi}(0, -z) e^{-iHt} \gamma^+ \psi(0, 0) | h \rangle$

Light-cone correlator for the hadron |h>

$$\begin{aligned} \text{FF} \quad D_q^h(z) = &z \int \frac{dy}{4\pi} e^{-iyM_h/z} \operatorname{Tr}\{\langle \Omega | \, \psi(yn^\mu) \\ &\times \underbrace{\sum_X |h, X\rangle \, \langle h, X | \, \bar{\psi}(0, 0) \, |\Omega\rangle \, \gamma^+ \} \end{aligned}$$

Light-cone correlator on the vacuum, inserted with a projector of hadron

$$P_{h} = \sum_{X} |h, X\rangle \langle h, X|$$

Lattice QCD: Large momentum theory, Xiaodong Ji

Still no Lattice QCD calculation: How to sum up X?

Quantum algorithm for PDF

Prepare the hadronic state with VQE(nontrivial)

Probe the dynamical correlator (standard)

Demo with 1+1D NJL model

$$\mathcal{L} = \bar{\psi}_{\alpha} (i\gamma^{\mu}\partial_{\mu} - m_{\alpha})\psi_{\alpha} + g(\bar{\psi}_{\alpha}\psi_{\alpha})^2$$

using the staggered fermion approach

$$\psi_{\alpha}(x) = \begin{pmatrix} \psi_{\alpha,1} \\ \psi_{\alpha,2} \end{pmatrix} = \begin{pmatrix} \phi_{\alpha,\frac{(\alpha-1)N}{2}+2n} \\ \phi_{\alpha,\frac{(\alpha-1)N}{2}+2n+1} \end{pmatrix} \equiv \begin{pmatrix} \phi_{\alpha,2n} \\ \phi_{\alpha,2n+1} \end{pmatrix}$$

Bare vacuum (large m limit) $|010101...01\rangle$

Lattice Hamiltonian

$$H = \sum_{\alpha,n} \left[-\frac{i}{2} \left(\psi_{\alpha,n}^{\dagger} \psi_{\alpha,n+1} - \psi_{\alpha,n+1}^{\dagger} \psi_{\alpha,n} \right) + (-1)^n m_{\alpha} \psi_{\alpha,n}^{\dagger} \psi_{\alpha,n} \right] \\ -g \sum_{\alpha,n=even} \left[\psi_{\alpha,n}^{\dagger} \psi_{\alpha,n} + \psi_{\alpha,n+1}^{\dagger} \psi_{\alpha,n+1} - 2\psi_{\alpha,n}^{\dagger} \psi_{\alpha,n} \psi_{\alpha,n+1}^{\dagger} \psi_{\alpha,n+1} \right]$$

Jordan Wigner transformation (Fermion-> qubit)

Quark-antiquark pair

Variational quantum eigensolver for preparing hadronic state

- hadron: excited state with given quantum numbers
- quantum-number-resolving VQE Input state has the given quantum number, and U $|\psi_{lk}(\theta)\rangle = U(\theta) |\psi_{lk}\rangle$ is symmetry-preserving
- ansatz: quantum-number-resolving, efficient and easy for optimization

$$H = H_1 + H_2 + \dots + H_n \qquad \qquad U(\theta) \equiv \prod_{i=1} \prod_{j=1} \exp(i\theta_{ij}H_j)$$

• subspace-search VQE: get a set of excited states at one time $_{PRR 1, 033062} (2019)$ Min $E_l(\theta) = \sum_i w_{li} \langle \psi_{li}(\theta) | H | \psi_{li}(\theta) \rangle$ $w_{l1} > w_{l2} > \cdots > w_{lk}$

1-flavor meson state

Large m limit as input states:

$$\begin{split} |\psi_{\Omega,1}\rangle &= |010101\dots01\rangle \ , & \text{bare vacuum} \\ |\psi_{\Omega,2}\rangle &= & \frac{1}{\sqrt{N/2}} \left(|\underline{10}01,\dots,01\rangle + |01\underline{10},\dots,01\rangle \\ &\quad +\dots + |0101,\dots,\underline{10}\rangle \right) \ , & \text{Zero momentum} \\ &\quad \text{superposition of} \end{split}$$

Zero momentum: superposition of a Quark-antiquark pair

Trial states:

 $|\psi_{lk}(\theta)\rangle = U(\theta) |\psi_{lk}\rangle$

 $U(\theta) \equiv \prod_{i=1}^{p} \prod_{j=1}^{n} \exp(i\,\theta_{ij}H_j)$

U: quantum fluctuations

Both vacuum and the meson should be superposition of different number of quark-antiquark pairs

Light-cone correlator and PDF (N=18)

- Real part consistent with 0.
- f is odd, so D is imaginary $f_q(x) = -f_{\bar{q}}(-x)$
- Bounded state behavior.
- $D(z) \equiv \sum_{ij} T_{ij}$ $f_{q_{\alpha}/h} = \sum_{i,j=0}^{1} \sum_{z} \frac{1}{4\pi} e^{-ixM_{h}z} T_{ij,\alpha}(z)$

x

Hadron projector in FF

• X is unknown, how can one sum unknow?

$$P_{h} = \sum_{X} \left| h, X \right\rangle \left\langle h, X \right|$$

sum=trace on a quantum computer = do nothing

$$\rho_{A} = \operatorname{Tr}_{B} |\psi\rangle \langle\psi|$$

$$Fr[O_{A}\psi] = Tr[O_{A}\rho_{A}]$$

$$A = B$$

- sum_X = Trace = Do nothing
- example: counting domain walls in a quantum state [0001111>, [1110001>,

then, the projector of domain wall is

$$N_F = \sum_i rac{1}{2} \left(1 - {Z}_i {Z}_{i+1}
ight) \hspace{1cm} Z \ket{n} = (-1)^{\,n} \ket{n}$$

Hadron projector: bare meson

• meson in a digital word (large m limit)

<u>01</u>	<u>11</u>	<u>00</u>	<u>10</u>	
No particle	<i>q</i> quark	\overline{q} antiquark	$q\overline{q}$ Quark- antiquark	

• at site i: $|I_i^0\rangle = |01\rangle, |I_i^1\rangle = |00\rangle, |I_i^2\rangle = |11\rangle, |I_i^3\rangle = |10\rangle$

• the hadron projector (T for translation symmetry)

$$P_{h}^{(0)} = \frac{1}{\sqrt{M}} \sum_{ij} |\mathbf{I}_{i}^{3}\rangle \langle \mathbf{I}_{i}^{3}| T^{j} \qquad |\mathbf{I}_{i}^{3}\rangle \langle \mathbf{I}_{i}^{3}| = 1 - \sigma_{2i}^{z} + \sigma_{2i+1}^{z} - \sigma_{2i}^{z} \sigma_{2i+1}^{z}$$

Meson in a quantum digital world

• superposition of $q\overline{q}$

 a dictionary of digital → quantum digital: vacuum, quark, antiquark, meson

$$\begin{split} |\Omega\rangle &= U \, |\mathbf{I}_{0}^{0}, \mathbf{I}_{1}^{0}, ..., \mathbf{I}_{0}^{M-1}\rangle \equiv U \, |\tilde{\Omega}\rangle \\ |h_{\alpha}\rangle &= \frac{1}{\sqrt{M}} \sum_{i=0}^{m-1} U \, |\mathbf{I}_{0}^{0}, \mathbf{I}_{1}^{0}, ..., \mathbf{I}_{i}^{\alpha}, \mathbf{I}_{i+1}^{0}, ..., \mathbf{I}_{M-1}^{0}\rangle \\ &\equiv \frac{1}{\sqrt{M}} \sum_{i=0}^{m-1} U \, |\tilde{h}_{\alpha}(i)\rangle \,. \end{split}$$

Eigenstates with specified quantum numbers!

The unitary U can be found with quantum-number preserving VQE (see PRD 105, L111502 (2022))

Quantum circuit for correlator of FF

• variational constructing the hadron projector:

• Evaluate the light-cone correlator inserted with a projector

Demo of FF: numeral simulation

As the lattice size is limited, a comparison with global-fitting is obtained in short-range:

$$\tilde{D}_{d+\bar{d}}^{\pi^{+}}(y) = \int_{z_{min}}^{1} \frac{M_{h}}{z^{3}} e^{iyM_{h}/z} D_{d+\bar{d}}^{\pi^{+}}(z)$$

$$m_q a = 0.4, \ m_h a = 0.6$$

 $z_{min} = 0.35$

QC for confinement-deconfinement transition

PhysRevD.106.054509(2022)

Model: 1+1D Schwinger model

• 1+1D quantum electrodynamics (U(1) gauge field)

$$\mathcal{L} = \bar{\psi} \left(\gamma^{\mu} (i\partial_{\mu} + gA_{\mu}) - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

electric flux
 e^{-} linear potential

- 麻雀虽小, 五脏俱全。 confinement, dynamical generated mass(gapped at m=0), chiral symmetry breaking...
- familiar to quantum computing community as easy to simulate.
- deconfinement at infinite temperature PRD 19.1188(1979)

Lattice Hamiltonian + Gauss law

• lattice Hamiltonian (is not enough)

$$H = \frac{1}{2a} \sum_{j=1}^{N-1} [\hat{\Phi}_{j}^{\dagger} \hat{U}_{j,j+1} \hat{\Phi}_{j+1} + h.c.] \qquad \qquad \hat{U}_{j,j+1} = e^{i\theta_{j,j+1}} \\ + m \sum_{j=1}^{N} (-1)^{j} \hat{\Phi}_{j}^{\dagger} \hat{\Phi}_{j} + \frac{g^{2}a}{2} \sum_{j=1}^{N-1} \hat{L}_{j,j+1}^{2} \qquad \qquad \hat{U}|l\rangle = |l+1\rangle$$

U(1) gauge theory

- Eliminate gauge field by Gauss law $\hat{L}_{j,j+1} = \varepsilon + \sum_{l=1}^{j} \left[\hat{\Phi}_{j}^{\dagger} \hat{\Phi}_{j} \frac{1 (-1)^{l}}{2} \right]$
- Qubit Hamiltonian: gauge field eliminated by Gauss law

$$H_{\varepsilon} = \varpi \sum_{j=1}^{N-1} [\hat{\sigma}_{j}^{+} \hat{\sigma}_{j+1}^{-} + h.c.] + \frac{m}{2} \sum_{j=1}^{N} (-1)^{j} \hat{\sigma}_{j}^{z} + \frac{g^{2}a}{2} \sum_{j=1}^{N-1} \left\{ \varepsilon + \sum_{l=1}^{j} \left[\hat{\sigma}_{l}^{z} + (-1)^{l} \right] \right\}^{2},$$

non-local interaction

• Finite density

$$H_{\varepsilon} \quad \Longrightarrow \quad G_{\varepsilon}(\mu) = H_{\varepsilon} - \frac{\mu}{2} \sum_{j=1}^{N} \hat{\sigma}_{j}^{z}$$

String tension: indicator of confinement/deconfinement

String tension as the difference of free energies with/without a pair of charges at boundaries

- Zero T. A linear potential between two charges(qqbar)
- Increasing T: the string is weaken by thermal fluctuations of qqbar.

Variational quantum algorithm for finitetemperature system

- free energy F=E-TS: energy vs entropy
- prepare thermal state $\rho(\beta) = e^{-\beta H}/Z(\beta)$ with VQA

Product spectrum ansatz

$$\rho(\boldsymbol{\omega}) = U(\phi)\rho_0(\theta)U^{\dagger}(\phi)$$
Entropy not change with U

Classical

computer

• minimize free energy:

$$F(\beta) = E(\beta) - TS(\beta)$$

computer

Illustration of the algorithm

Hybrid quantum-classical optimization

String tension at finite-T finite-density

Conclusion

- QC for dynamic properties of hadron structure
- QC for finite-temperature & finite-density nuclear matter

Outlook:

- gluon PDFs
- phase diagram of QCD
- 2+1D systems