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Motivation : 

• , each boson decay to two quarks, further to two jets, each jet 
consists of several particles


• goal : reconstruct each boson, then separate WW/ZZ events

e+e− → WW or ZZ

BOSON BOSON

Q1 Q2 Q3 Q4

bosons


quarks


final state particles

https://doi.org/10.1140/epjc/s10052-019-6719-2
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samples :  and e+e− → WW → cusd e+e− → ZZ → down quarks

traditional method : 

1, reconstruct four jets  with jet clustering algorithm


2, pair four jets to two di-jet systems with method: , where 
 . There are three pairing conditions : 12 34, 13 24, 14 23, we select the condition with 


minimal 

3, evaluation criteria : the overlapping fraction of two histograms 

J1, J2, J3, J4

χ2 = (M12 − MB)2 + (M34 − MB)2

MB : MW or MZ
χ2

0.5 × (M12 + M34)
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MaxCut : 


Graph : Set of vertices or nodes V connected by weighted edges E

Cut : Partition of vertices into two disjoint subsets.


To maximize the sum of the weight of the edges with two nodes partitioned.
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Wij = min(abs(Mij − MW), abs(Mij − MZ))

1

4

2

3

W12

W13

W34

W24

W23

W14

Map our problem to MaxCut.
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Variational quantum algorithms :

approximating ground state  and lowest energy  of a quantum system


(1) prepare initial state , which is easy to construct


(2) construct parameterized quantum circuit  based on your problem


(3) get the state   evolved from  through quantum circuit, 


(4) calculate 


(5)  Vary parameters  to minimize the energy value  to get 


(6)  is an upper bound for  and  approximates 

|ψ*⟩ Emin

|ψ0⟩
U(θ)

|ψ(θ)⟩ |ψ0⟩ |ψ(θ)⟩ = U(θ) |ψ0⟩
E(θ) = ⟨ψ(θ) |H |ψ(θ)⟩

θ E(θ) = ⟨ψ(θ) |H |ψ(θ)⟩ θ* = argmin
θ

E(θ)

E(θ*) Emin |ψ(θ*)⟩ |ψ*⟩

initial state
parameterized circuit

observable measurement
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initial state

model prediction

cost functioninput outputconstruct

     features of samples                          


quantum circuit final state

classification

or


regression


y’

|ψ(0)⟩ |ψ(θ)⟩

f(y, y’)

E(θ) = ⟨ψ(θ) |H |ψ(θ)⟩

ML

VQA

VQA  v.s.  ML
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QAOA for Max-cut problem :


the driver Hamiltonian  : 


process :1, letting the system evolve under , where 


 


                    2, letting the system evolve under C for some  amount of time and under B for some  
amount of time respectively.

                     3, prepare the quantum state  and compute 


as , we perfectly replicate AQC


                     4, measure  in the computational basis to get some bit-string z, and evaluate C(z)

HD B =
n

∑
j=1

σ x
j

H(t) = (1 − s(t))HD + s(t)HP s(0) = 0, s(T ) = 1

γ β

|s⟩ |γ, β⟩ = U(B, βP)U(C, γP) . . . U(B, β1)U(C, γ1) |s⟩
P → ∞

|γ, β⟩

the problem Hamiltonian  : HP C =
1
2 ∑

(i, j)∈E

Wij(1 − σz
i σz

j )

adiabatic quantum algorithm to QAOA see backup

9



P= 2 P= 4 P= 10

comparison of different P values
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how to determine the P values

the correctly pairing ratio versus P values :
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traditional QAOA with depth =10
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traditional v.s. QAOA



dij = 2min(E2
i , E2

j )(1 − cosθij)

α1α2
quark1

quark2
jet1

jet2

jet clustering on Z → uū
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Summary: 

• QAOA can be used to do jet clustering and jet matching.

• With increasing depth of QAOA, the jet matching performance is being better.

• Whether QAOA can surpass traditional approach in jet matching need to be explored 

further.

• For jet clustering, the performance of QAOA can reach traditional approach on small

• qubits’ events, while it is hard to improve on large qubits’ events.


To do:

Sample more times and run on the real hardware.
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Thank you !
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Backup
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Introduction of adiabatic quantum computation and the evolution from 

AQC to QAOA


AQC : a theoretical framework


components : 1, the driver Hamiltonian ( ) encodes some quantum state that is easy to prepares 

its ground state    2, the problem Hamiltonian ( ) encodes a quantum state we are interested in as its ground 
state

the idea underline the AQC : we start with a ground state that is easy to prepare and wish to end up with the quantum state we are interested in. 

This transition is accomplished via the adiabatic theorem, which states that a system in the ground state of some Hamiltonian will remain in the ground 
state if the Hamiltonian is changed slowly enough.


the process of AQC : 1, define the Hamiltonian:  and let our 

quantum system evolve under it. Unfortunately, time evolution under this time-dependent 

Hamiltonian involves very messy integral that is hard to evaluate : 

                                                 2, We discretize  into intervals of  small enough that the 

Hamiltonian is approximately constant over each interval.

                                                 3, Let  represent time evolution from time a to time b





since   we get       Thus 

we can approximate AQC by repeatedly letting the system evolve under  for some  and 

then  for some small    

HD

HP

H(t) = (1 − s(t))HD + s(t)HP

U(t) = τe
−i
h ∫t

o H(T )dT

U(T ) Δt

U(b, a)

U(T,0) = U(T, T − Δt)U(T − Δt, T − 2Δt) . . . U(Δt,0) =
P

∏
j=1

U( jΔt, ( j − 1)Δt) ≈
P

∏
j=1

e−iH( jΔt)Δt

H( jΔt) = (1 − s( jΔt))HD + s( jΔt)HP U(T,0) ≈
P

∏
j=1

e−i(1−s( jΔt))HDΔte−is( jΔt)HPΔt

HP s( jΔt)Δt
HD (1 − s( jΔt))Δt
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U(T,0) ≈
P

∏
j=1

e−i(1−s( jΔt))HDΔte−is( jΔt)HPΔt =
P

∏
j=1

U((1 − s( jΔt))Δt, HD)U(s( jΔt)Δt, HP) =
P

∏
j=1

U(βj, B)U(γj, C)

U(T,0) = U(T, T − Δt)U(T − Δt, T − 2Δt) . . . U(Δt,0) =
P

∏
j=1

U( jΔt, ( j − 1)Δt) ≈
P

∏
j=1

e−iH( jΔt)Δt

H( jΔt) = (1 − s( jΔt))HD + s( jΔt)HP

AQC

QAOA

H(t) = (1 − s(t))HD + s(t)HP U(t) = τe
−i
h ∫t

o H(T )dT
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coding of max-cut in qiskit : 

basics : the rotation gate 








only consider one layer : P = 1

, where 


prepare initial state 

for i in n_nodes:


qc.h(i)


apply  to qubits (we only consider weight on edges):

for edge in edges:


qc.rzz( , )

Rx(θ) = e−iθX/2

Ry(θ) = e−iθY/2

Rz(θ) = e−iθZ/2

∑
<ij>

C<ij> |U(B, β1)U(C, γ1) |s⟩ = ∑
<ij>

C<ij> |e−iβ1(σ x
i +σ x

j )e−iγ1Wij(σ z
i σ z

j ) |s⟩ |s⟩ = H |0⟩⊗n

| + ⟩⊗n

U(C, γ) and U(B, β)

2 ⋅ γ1 ⋅ Wij qi, qj
for node in nodes:

      qc.rx( , )2 ⋅ β1 qi

19


