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Motivation :

https://doi.org/10.1140/epjc/s10052-019-6719-2

« ete™ - WW or ZZ, each boson decay to two quarks, further to two jets, each jet
consists of several particles
* goal : reconstruct each boson, then separate WW/ZZ events
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https://doi.org/10.1140/epjc/s10052-019-6719-2

traditional method :

1, reconstruct four jets Jy, J,, J5, J, with jet clustering algorithm

2, pair four jets to two di-jet systems with me’thod:){2 — (M12 = MB)2 <= (M34 - MB)z, where
My : My, or M, . There are three pairing conditions : 12 34, 13 24, 14 23, we select the condition with
minimal y?

3, evaluation criteria : the overlapping fraction of two histograms 0.5 X (M, + M;,)

samples : etfe™ > WW — cusd and ee™ — ZZ — down quarks
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MaxCut .

Graph : Set of vertices or nodes V connected by weighted edges E
Cut : Partition of vertices into two disjoint subsets.

To maximize the sum of the weight of the edges with two nodes partitioned.




Map our problem to MaxCut.

VVi'

T min(dbS(sz — My), abS(Mij — M)




Variational quantum algorithms :

approximating ground state |y*) and lowest energy E, .. of a quantum system
(1) prepare initial state |y), which is easy to construct

2) construct parameterized quantum circuit U(0) based on your problem

4) calculate E(0) = (w(0) | H|w(0))

(2)

(3) get the state |y (0)) evolved from |yy) through quantum circuit, |y(0)) = UO) | )

(4)

(5) Vary parameters 6 to minimize the energy value E(0) = (w(0) | H|w(0)) to get 8* = argminE(0)
0

(6) E(6*)is an upper bound for E, . and |y(6*)) approximates |y™*)

Variational Quantum Circuit Classical Optimizer

Measurement
————————

E©) = (y(6)|H[p(6))

Parameter update
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parameters update

VQA v.s. ML

input sl output cost function

features of samples model prediction

[part_isElectron, nulll]
[part_isMuon, null] @’
[part_isNeutralHadron, null]

7 EdgeConv Block
[part_isPhoton, nulll e

[part:de, null] —1 CIaSSificatiOn

[part_de@err, 0, 1, 9, 1]

EdgeConv Block
[part_dz, null] k=16, C = (128, 128, 128)
[part_dzerr, 0, 1, 0, 1] — or

[part_deta, nulll EdgeConv Block

[part_dphi, null] k=16,C= 9&3%62%> .
o regression

[part_e_log, -0.687, 1.0] ,
[part_logptrel, -4.7, 1.0] ‘ \%GRLUD i
[part_logerel, -4.473, 1.0] }
[part_deltaR, 2.1, 2.3]
[part_charge, null] ; ¥
[part_isChargedHadron, nulll | Softmax
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QAOA for Max-cut problem :

n
: e 1
the driver Hamiltonian Hy, : B = 2 Gf the problem Hamiltonian Hp : C = 5 2 Vvij(l = GI.ZO'J.Z)
=1 (i.))EE

process :1, letting the system evolve under H(¢) = (1 — s(£))Hp + s(t)Hp, where s(0) = 0, s(T) = 1

adiabatic quantum algorithm to QAOA | | see backup

2, letting the system evolve under C for some y amount of time and under B for some f
amount of time respectively.

3, prepare the quantum state |s) and compute |y, f) = U(B, Bp)U(C, yp) ... UB, B)U(C, 7)) | s)
as P — oo, we perfectly replicate AQC

4, measure |y, ) in the computational basis to get some bit-string z, and evaluate C(z)
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comparison of different P values
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how to determine the P values

the correctly pairing ratio versus P values :
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traditional v.s. QAOA traditional QAOA with depth =10
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Summary:

QAOA can be used to do jet clustering and jet matching.

With increasing depth of QAOA, the jet matching performance is being better.
Whether QAOA can surpass traditional approach in jet matching need to be explored
further.

For jet clustering, the performance of QAOA can reach traditional approach on small

qubits’ events, while it is hard to improve on large qubits’ events.

To do:

Sample more times and run on the real hardware.




Thank you |
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Introduction of adiabatic quantum computation and the evolution from

AQC to QAOA

AQC : atheoretical framework

components : 1, the driver Hamiltonian (H),) encodes some quantum state that is easy to prepares

its ground state 2, the problem Hamiltonian (H;) encodes a quantum state we are interested in as its ground

state

the idea underline the AQC : we start with a ground state that is easy to prepare and wish to end up with the quantum state we are interested in.
This transition is accomplished via the adiabatic theorem, which states that a system in the ground state of some Hamiltonian will remain in the ground

state if the Hamiltonian is changed slowly enough.

the process of AQC : 1, define the Hamiltonian: H(1) = (1 — s(¢))H, + s(t)Hp and let our

quantum system evolve under it. Unfortunately, time evolution under this time-dependent

Hamiltonian involves very messy integral that is hard to evaluate : U(t) = e L HDAT

2, We discretize U(T) into intervals of At small enough that the

Hamiltonian is approximately constant over each interval.

3, Let U(b, a) represent time evolution from time a to time b
P

e
UT0)= UL, T— ADU(T — A1, T - 240 ... UALD) = H UGAL (j— DA ~ He-ly( JADAT
J=1 =1
P
since H(jA?) = (1 — s(jJA))Hp + s(jJAHHp, we get U(T,0) = He—i(l—s(jAt))HDAre—is(jAt)HpAz T
j=1
we can approximate AQC by repeatedly letting the system evolve under Hy for some s(jAf)At and

then Hj, for some small (1 — s(jA?))At
17




H(t) = (1 — s(t))Hp + s(t)Hp U(f) = ze7 lo HDAT

& P
AQC  U(T.0) = U(T.T - ADU(T — At, T - 2A9) ... UAL0) = [ JUGAL (G — DAD » [ [e-Hua0A!

Tl Il

H(jAD = (1 — s(AD)H + s(ADH,

%

% P
QAOA U(T,0) ~ He—i(l—S(jAt))HDAte—iS(jAt)HpAt = H Ul = S(jAt))At, HD)U(S(jAf)At, HP) a7 H U(ﬁja B)U(}/], £y
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coding of max-cut in giskit :

basics : the rotation gate
Rx(g) = e—iHX/Z

e~ 7
Ry(e) & f92/2
R(0)=¢e™"

only consider one layer : P = 1
2 C<ij> | UB, p)UC, vy) | T Z C<ij> | ¢~ +07) o —in Wy(oiof) |s), where|s) = H| O>®n

<ij> <l

prepare initial state | + \®n
for i in n_nodes:
gc.h(i)

apply U(C, y) and U(B, f) to qubits (we only consider weight on edges):
for edge in edges:

qcrzz(2 v Wi 45 q)
for node in nodes:

gc.rx(2 - 1, q,)




