

Boost physics analysis at BESIII with Deep Learning

Yunxuan Song^{1,2,3}, **Yangu Li^{1,2}**, Linxuan Zhu², Xiaoxuan Ding¹, Junpeng Zhao², Peirong Li⁴, Jifeng Hu⁵, Xiao-Rui Lyu², Dayong Wang¹, Yajun Mao¹, Yangheng Zheng² ¹PKU ²UCAS ³EPFL ⁴LZU ⁵SCNU

Quantum Computing and Machine Learning Workshop August 13, 2023

The BESIII experiment

• BEPCII: an e^+e^- collider

- Operation at $\sqrt{s} = 2.0 \sim 4.95 \text{ GeV}$
- Peak luminosity: $1.1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- More than 47 fb^{-1} of data taken since 2009

BESIII: a multi-purpose 4π detector with

- Good tracking
- Calorimetry
- PID & muon detection

- Over 500 publications achieved
 - Improving data analysis technique is vital to fully explore the physics potential!

Issues in physics analysis: Neutral hadron reconstruction

• Neutral hadron $(n \& K_L^0)$ study at BESIII

- HCAL is absent in BESIII detector
- Scattering & energy leak when interact with EMC
- Typical image:
 - An indefinite number of EMC showers
 - Showers have expanded cluster shape & low deposit energy

Recoil strategy

- Reconstruct all other particles in event, then calc the recoil 4-momentum
- Works fine in most cases except more than one 'invisible' particles
 - Decays with both neutron & neutrino: $\Lambda_c^+ \rightarrow n e^+ v_e$, ...
 - Decays with both neutron & photon: $\Lambda \rightarrow n\gamma$, ...
 - Decays with multiple neutrons: $e^+e^- \rightarrow n\bar{n}$, ...

More straightforward & sensitive approach?

Issues in physics analysis: Charmed hadron tagging

Charmed hadron study at BESIII

- Mostly produced above $h\bar{h}$ threshold $(h = D^{0/+}, D_s^+, \Lambda_c^+ ...)$
- Two reconstruction strategy
 - Single-tag (ST): not constrain \bar{h} decay
 - Double-tag (DT): constrain \overline{h} decay exclusively
- Tradeoff between signal efficiency & background level

Efficiency problem

- Charmed hadrons have $\mathcal{O}(100)$ decay modes
- A dozen of primary decay modes are considered in DT
- Total covered BF \sim 30%, reconstructed $h\bar{h}$ pairs only \sim 15%

• Can we improve the tagging performance by doing it inclusively?

Issues in physics analysis

What's common between above two issues?

• Information embedded into an indefinite number of particles

Why are classical MVA tools not good solution? (e.g., BDT)

- Only process fixed number of features loss of information anyway
- Obsolete ML structure less efficient to find signal process

• Stones from other hills - jet tagging at LHC

- Jet: a collimated spray of particles (with indefinite number)
- Jet tagging: identify the elementary particle that initiates a jet
- Revolutionary changes thanks to deep learning
 - Continuous iteration using cutting-edge ML techniques
 - Officially recognized and supported by CMS & ATLAS Collaboration
 - International workshop: <u>ML4Jets</u>

Our deep learning toolkit

Event representation – point cloud

- As image?
 - \checkmark Natural idea by regarding calorimeter cells as pixels
 - ✓ Can benefit from **computer vision (CV)** applications
 - ! Most pixels remain blank
 - ! Nontrivial to combine non-additive features of particles

• As sequence?

- ✓ More compact data structure
- ✓ Straightforward to include any kind of features
- ✓ Can benefit from **natural language processing (NLP)** applications
- ! Impose a sorting order manually

• As point cloud!

- Unordered, permutation-invariant set of particles
- Each particle carries spatial coordinates + additional features (charge, momentum, track & shower parameters, etc.)
- Symmetry-preserving, high expressiveness, low computational cost

The physics result will remain same regardless of the coordinates entered!

Point cloud of an aircraft generated by 3D scanning

Point cloud of a HEP event

Our deep learning toolkit

Model structure – Graph Neural Network (GNN)

- Graph with vertex (node), edge (link) and global level features
- "Message passing" framework
- Points in cloud naturally becomes nodes, while edges remain to be defined

ParticleNet: <u>PRD 101 (2020), 056019</u>

- Build "edge features" between *k*-nearest neighboring points
- Design a symmetric "convolution" function on edges
- Dynamically update the graph

Our deep learning toolkit

Model structure – Transformer

- Foundation of Large Language Models like GPT
- Core concept: self-attention mechanism
- Particle Transformer: <u>2202.03772</u>
 - A transformer model tailored for particle physics
 - Inject physics-inspired pairwise features as "bias" to the self-attention block
 - Can be also viewed as a fully-connected GNN

Application in Neutral hadron reconstruction: Study of $\Lambda_c^+ \rightarrow ne^+ \nu_e$

Study of $\Lambda_c^+ \rightarrow n e^+ \nu_e$

Physics motivation

- Λ_c^+ semi-leptonic decays are essential to test non-perturbative QCD
- Tons of theoretical predictions, yet never experimentally observed

Experimental challenge

- Decays with both neutron & neutrino
- Dominant background from $\Lambda_c^+ \to \Lambda(n\pi^0)e^+\nu_e$, yield ~10x signal
- Unable to extract signal with conventional analysis strategy

LQCD			H •1	
NRQM Phys. Rev. D 40 (1989) 2955		•		
RQM Phys. Rev. D 56 (1997) 348		•		
HQET Phys. Rev. C 72 (2005) 035201		•		
CQM Phys. Rev. D 90 (2014) 114033	•			
RQM Eur. Phys. J. C 76 (2016) 628		•		
SU(3) Phys. Rev. D 93 (2016) 056008		 1		
QCDSR J. Phys. G 44 (2017) 075006		iei		
SU(3) JHEP 11 (2017) 147	٠	 1		
LFQM Chin. Phys. C 42 (2018) 093101	•			
SU(3) Phys. Lett. B 792 (2019) 214				⊢ •−1
MBM Phys. Rev. D. 101 (2020) 094017		•		
LFCQM Phys. Rev. D 103 (2021) 054018	-		•	
SU(3) Phys. Lett. B 823 (2021) 136765				⊢-•
HBM Phys. Rev. D 107 (2023) 033008			⊢ •–-i	
EXP ?				

- Use GNN to identify $\Lambda_c^+ \rightarrow n e^+ \nu_e$ from $\Lambda e^+ \nu_e$
 - Form point cloud with n/Λ induced EMC showers
 - Input features including energy deposition & cluster expansion information
 - Treat conjugate channels separately
 - Anti-neutron may annihilate while neutron won't
 - Firstly try training using MC simulated samples ->

Good separation! But...

- The Geant4-based MC simulation for neutron is not perfect
- Up to 10~20% difference from real data
- In HEP view: data-MC discrepancy can affect BF measurement
- In ML view: domain shift if train with MC but predict with data

BESIII has various "control samples" for study

- Thanks to its large datasets & low background
- Select 20M $J/\psi \rightarrow \bar{p}n\pi^+ \& \bar{p}\Lambda K^+$ events from real data

Good separation & data-MC consistence now! But...

- The phase space & background environment is different between $J/\psi \& \Lambda_c^+$ samples
- In HEP view: should prove the weight factors have no bias
- In ML view: another source of domain shift
- Apply another control sample for prediction
 - $J/\psi \to \Sigma^+(\mathbf{n}\pi^+)\overline{\Sigma}^-(\bar{p}\pi^0)$ vs. $J/\psi \to \Xi^-(\mathbf{\Lambda}\pi^-)\overline{\Xi}^+(\overline{\mathbf{\Lambda}}\pi^+)$
 - Data & MC still well consistent in large statistics after weighting

• Finally...

- Assume $\mathcal{B}(\Lambda_c^+ \rightarrow ne^+\nu_e) = 3 \times 10^{-3}$ to construct pseudo data
- We can extract the signal with $> 10\sigma$ significance & no bias

• The physics result is under internal review. Stay tuned!

Application in Charmed hadron tagging: Study of $\Lambda_c^+ \rightarrow p\pi^0$

Study of $\Lambda_c^+ o p\pi^0$

Physics motivation

- Non-leptonic, Cabibbo-Suppressed weak decay
- $\Lambda_c^+ \rightarrow p\eta$ well measured, $\Lambda_c^+ \rightarrow n\pi^+$ also observed
- $\Lambda_c^+
 ightarrow p \pi^0$ not yet observed

Experimental challenge

- High background for ST, mostly $q\bar{q}$ (q = u, d, s)
- Neither ST nor DT can achieve sufficient signal sensitivity

$\mathcal{B}(\Lambda_c^+ \to p\pi^0) \times 10^4$	$\mathcal{B}(\Lambda_c^+ \to p\eta) \times 10^4$	$\mathcal{B}(\Lambda_c^+ \to n\pi^+) \times 10^4$	$\frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+)}{\mathcal{B}(\Lambda_c^+ \to p\pi^0)}$
(1, 2)	3	(8, 9)	(8, 4.5)
1.1 - 3.6	-	1.0 - 2.1	0.5
(0.75, 1.3)	12.8	2.66	(3.5, 2.1)
$0.8^{+0.9}_{-0.8}$	11.4 ± 3.5	7.7 ± 2.0	9.6
$(0.3^{+1.0}_{-0.3}, 0.4^{+1.7}_{-0.4})$	$(14.2 \pm 2.3, 14.7 \pm 2.8)$	$(7.6 \pm 1.7, 8.3 \pm 2.6)$	(25.3, 20.8)
2	-	4	2
4.8	-	9.7	2.0
5.7 ± 1.5	-	11.3 ± 2.9	2.0
1.3 ± 0.7	13.0 ± 1.0	6.1 ± 2.0	4.7
$1.1^{+1.3}_{-1.1}$	11.2 ± 2.8	7.6 ± 1.1	6.9
< 2.7 [18]	12.4 ± 3.0 [18]	6.6 ± 1.3 [21]	-
< 0.8 [20]	14.2 ± 1.2 [20]	-	> 7.2
	$ \begin{split} \mathcal{B}(\Lambda_c^+ \to p\pi^0) \times 10^4 \\ (1, 2) \\ 1.1 - 3.6 \\ (0.75, 1.3) \\ 0.8^{+0.9}_{-0.8} \\ (0.3^{+1.0}_{-0.3}, 0.4^{+1.7}_{-0.4}) \\ 2 \\ 4.8 \\ 5.7 \pm 1.5 \\ 1.3 \pm 0.7 \\ 1.1^{+1.3}_{-1.1} \\ < 2.7 \ [18] \\ < 0.8 \ [20] \end{split} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c } & \mathcal{B}(\Lambda_c^+ \to p\eta) \times 10^4 & \mathcal{B}(\Lambda_c^+ \to n\pi^+) \times 10^4 \\ \hline (1, 2) & 3 & (8, 9) \\ \hline (1, 2) & 3 & (8, 9) \\ \hline 1.1 - 3.6 & - & 1.0 - 2.1 \\ (0.75, 1.3) & 12.8 & 2.66 \\ \hline 0.8^{+0.9}_{-0.8} & 11.4 \pm 3.5 & 7.7 \pm 2.0 \\ \hline (0.3^{+1.0}_{-0.3}, 0.4^{+1.7}_{-0.4}) & (14.2 \pm 2.3, 14.7 \pm 2.8) & (7.6 \pm 1.7, 8.3 \pm 2.6) \\ \hline 2 & - & 4 \\ \hline 4.8 & - & 9.7 \\ \hline 5.7 \pm 1.5 & - & 11.3 \pm 2.9 \\ \hline 1.3 \pm 0.7 & 13.0 \pm 1.0 & 6.1 \pm 2.0 \\ \hline 1.1^{+1.3}_{-1.1} & 11.2 \pm 2.8 & 7.6 \pm 1.1 \\ \hline < 2.7 [18] & 12.4 \pm 3.0 [18] & 6.6 \pm 1.3 [21] \\ \hline < 0.8 [20] & 14.2 \pm 1.2 [20] & - \\ \end{array} $

16 / 24

Deep learning solution for $\Lambda_c^+ \rightarrow p\pi^0$

• Use GNN to identify $\Lambda_c^+ o p\pi^0$ from hadronic background

- Form point cloud with all recorded particles in event
- Input features including momentum & low-level detector responses
- Embedded information for training:
 - Kinematics, reconstruction quality & PID of each particle
 - Topology & dynamics of full e^+e^- decay

• We can only use MC for training now!

- Study $\Lambda_c^+ \rightarrow p\eta(\gamma\gamma)$ as a reference channel
- MC should be co-directional biased from data for $p\pi^0 \& p\eta$
- Report their relative BF ratio can greatly cancel the systematics
- To achieve consistent training performance, data augmentation is applied
 - Mix their training samples

Dramatic separation!

- Two orders of magnitude BKG suppression @ 50% signal efficiency
- Can be further enhanced via model ensemble

Deep learning solution for $\Lambda_c^+ \rightarrow p\pi^0$

Dramatic separation! But...

- We extract the signal by fitting to Λ_c^+ mass spectrum
- It's somehow coupled with GNN response
- Background shape peaks in signal region after veto
- In jet tagging, such phenomenon is called mass sculpting

CMS colleagues have <u>various experiences</u> to prevent that

- Transform model response, design adversarial networks, reweight training samples...
- But none can fit our case well

We establish an iterative reweight method

- Assign a weight $\omega(M_{BC})$ for each BKG event in loss function
 - $\omega_0(M_{BC}) = 1, \omega_i(M_{BC}) = \omega_{i-1}(M_{BC}) \cdot \frac{p_{i-1}^{BKG}(M_{BC})}{p_{BKG}^{BKG}(M_{BC})}$
 - $p_{orig}^{BKG}(M_{BC})$: the original BKG shape before veto
 - $p_{i-1}^{BKG}(M_{BC})$: the BKG shape after veto in (i-1)th iteration
- Repeat the training and iteration would converge when $p_{i-1}^{BKG}(M_{BC}) \simeq p_{orig}^{BKG}(M_{BC})$

Deep learning solution for $\Lambda_c^+ \rightarrow p\pi^0$

- Two orders of magnitude BKG suppression
- Signal sensitivity greatly improved
- Conventional ST method needs 5x datasets to achieve such sensitivity

"Boost" physics analysis with less time & budget!

- The physics result is under internal review.
- We can expand this paradigm to more charm studies!

19 / 24

Outlook

R&D for future collider experiments

Charmed hadron tagging @ e.g. STCF

- Luminosity ~100x BESIII, data rate ~EB/year
- High pressure on data storage & offline processing
- A ML-based software trigger for charmed hadron study?
 - Assign a classification label for events in user-accessible dataset
 - Users can skip the background events to accelerate job running

STCF CDR, 2303.15790

R&D for future collider experiments

- Feasibility study of a "software trigger"
 - Classification between $\Lambda_c^+ \overline{\Lambda}_c^- \&$ background

Classification between Λ_c^+ tag modes

22 / 24

Advanced ML study @ BESIII

From analysis tools to real intelligence

- Fast simulation
- Trigger: hardware / software
- Reconstruction: tracking, PID, vertex, clustering...
- Analysis: signal identification, likelihood approximation, anomaly detection...
- Interpretability, uncertainty...

BESIII as an ideal laboratory for advanced ML study

- Large, labeled, background-free datasets
 - e.g., 10 billion J/ψ events @ BESIII
- High-quality, fully simulated MC
- Rich topology
 - Low-level detector response -> particle 4-momentum -> full decay tree
- Energy-momentum conservation in event
 - Hidden symmetry can inspire new ML structures

We welcome ML experts for cooperation!

Summary

Issues in physics analysis motivate our investigation

- Direct reconstruction of neutral hadron
- Inclusive tagging for charmed hadron

Powerful deep learning toolkit

- Point cloud representation
- GNN & Transformer-based model architecture

Rich physics results in production

Bright future outlooks

- R&D for future Tau-Charm Factory
- Support advanced ML study

Thanks for your attention!

24 / 24