

Symmetry Preserving Attention Networks (SPA-Net) for Resolved Top & Higgs Reconstruction at the LHC

Quantum Computing & Machine Learning Workshop, August 11-14, 2023

Shandong University

Michael Fenton¹, Alexander Shmakov¹, <u>大川(Okawa)英希(Hideki)²</u>, Yuji Li³, Ko-Yang Hsiao⁴, Shih-Chieh Hsu⁵, Daniel Whiteson¹, Pierre Baldi¹

UC Irvine¹, 高能所(IHEP)², Fudan³, National Tsing Hua⁴, Washington⁵

Jet-Parton Matching for Top, etc.

- Jet-parton assignment (e.g. top, Higgs reconstruction) is a crucial component in tt
 t t
 - Standard algorithms compare all possible permutations of jets per event & systematics
 - Combinatoric diverges with jet multiplicity.

Attention Transformers

- Attention mechanisms are superceding RNNs & LSTMs in neuro linguistic programming.
 - Permutation invariant & can handle variable-length lists
- A paradigm shifting impact as seen in Chat GPT, etc.
- Why not use it in particle physics? \rightarrow Yes, we already do!
 - SPA-Net (this & previous works)
 - Particle Transformer: Huilin Qu, Congqiao Li, Sitian Qian, arXiv:2202.03772
 → Application to ATLAS & CEPC (王书栋's talks)
 - Attention-Based Cloud Network (ABCNet): Lukas Gouskos, <u>Fabio lemmi (IHEP)</u>, Sascha Liechti, Benedikt Maier, Vinicius Mikuni , Huilin Qu, arXiv:2211.02029
 - etc.

Symmetric Tensor Attentions

- Symmetric Tensor Attentions: generalization of attention to encode symmetries ($t \leftrightarrow \overline{t}, b \leftrightarrow \overline{b}$ in H, $q \leftrightarrow \overline{q'}$ in W)
- Natural permutation invariance from attention: no arbitrary $\ensuremath{p_{\text{T}}}\xspace^-$ ordering
- Symmetry from particle decays encoded: e.g. Two-body decay symmetries $(W \rightarrow q \overline{q'}, H \rightarrow b \overline{b'})$ Attention Weights (X: list of particle vectors)

Symmetryic Weight Tensor (for $t \rightarrow bqq$ case; Θ : learnable weights)

 $S^{i_1 i_2 i_3} = \Theta^{i_1 i_2 i_3} + \Theta^{i_2 i_1 i_3}$

$$O^{j_1 j_2 j_3} = X_{i_1}^{j_1} X_{i_2}^{j_2} X_{i_3}^{j_3} S^{i_1 i_2 i_3}$$

Joint distributions for particles

$$\mathcal{P}^{j_1 j_2 j_3} = \frac{\exp\left(O^{j_1 j_2 j_3}\right)}{\sum_{j_1, j_2, j_3} \exp\left(O^{j_1 j_2 j_3}\right)}$$

4

Quantum Computing & Machine Learning Workshop

Training

• One output per final-state particle & can embed symmetries in the loss function if needed (e.g. $t \leftrightarrow \overline{t}$ in all hadronic final state)

$$\mathcal{L}_{min} = \min_{\sigma \in G_E} \sum_{i=1}^m CE(\mathcal{P}_i, \mathcal{T}_{\sigma(i)})$$

CE: cross entropy T: δ -distributions containing one possible valid jet assignment σ : symmetries b/w particles

Partial Event Training

- Jets are often lost due to the detector acceptance. \rightarrow e.g. As much as 65% in $t\bar{t}$ H semi-lep. events cannot be fully reconstructed.
- Instead of fully discarding such events, we keep particles in the training if they are reconstructable. **Highly efficient usage of training data statistics!**

$$\mathcal{L}_{min}^{masked} = \min_{\sigma \in G_E} \left(\sum_{i=1}^m \frac{\mathcal{M}_{\sigma(i)} CE(\mathcal{P}_i, \mathcal{T}_{\sigma(i)})}{CB\left(\mathcal{M}_{\sigma(1)}, \mathcal{M}_{\sigma(2)}, \dots, \mathcal{M}_{\sigma(m)}\right)} \right)$$

M: mask term CB: Normalization factor to balance the class of particle presence

Symmetry Preserving Attention Networks (SPA-Net)

Event-level context-Particle-level Symmetric jet matching aware encoding encoding Particle Jet Central Outputs Embeddings Transformers Transformer Transformer Tensor $\bullet \mathcal{P}_1$ Unordered list Full Encoder Attention Transformer Transformer Transformer of object fourjet/doublet/triplet Transformer Tensor \mathbf{P}_2 assignment momenta + Encoder Attention additional info distributions for \mathcal{E}_n 00 0 00 000 Õ (e.g. btag) & every particle Encoder Encoder Encoder Transformer Tensor event-level Lepton targe (e.g. t, H) $\blacktriangleright \mathcal{P}_m$ Attention Encoder Embedding variables (e.g. MET) $\rightarrow \eta_{\nu}$ Regression Heads Global $\rightarrow m_{t\bar{t}}$ Embedding Classification $\rightarrow S/B$ c_G Heads H. Okawa 6

Dataset & Selection

- Generated MadGraph 5 interfaced with Pythia8 for showering & hadronization
- Detector response with Delphes v3.4.2 using the CMS card
- Top mass = 173 GeV

Object selection:

- Object overlap removal done
- Electron, muon p_T >25 GeV, $|\eta|$ <2.5.
- Jet p_T >25 GeV, $|\eta|$ <2.5 (dR matching considerd for truth jet-parton assignment)

```
Preselection: =1-lepton, \geq4 jets & \geq2 b-jets (for both t\bar{t} & t\bar{t}H)
```

Baseline: Existing Methods

- 1. (χ^2 minimization: The simplest approach, considered in the previous all-hadronic studies; not considered in this talk)
- KLFitter: likelihood-based kinematic fitting, assuming or not assuming a specific top mass (in this talk, the former);
 <u>J. Erdmann et al., NIM A 748 (2014) 18</u>
- 3. Permutation DNN: DNN considering all possible permutations; <u>J. Erdmann et al., JINST 14 (2019) P11015</u>

Reconstruction in semi-leptonic $t\bar{t}$ & $t\bar{t}H$

- New version of SPA-Net can handle different types of physics objects (jets, leptons, etc.)
- Can add event-level variables (MET, MET ϕ , etc.)
- *tt*
 - SPA-Net: **75.6%** full event reconstruction (85.5-59.8% vs NJets)
 - Permutation DNN: 64.9% (80.3-48.8%)
 - KLFitter: 52.1% (77.2-23.7%)
- $t\overline{t}H(\rightarrow b\overline{b})$
 - SPA-Net: **54.2%** in 6j, 42.6% in 7j
 - Permutation DNN: **48.8%** in 6j, 36.4% in 7j
 - KLFitter: **31.4%** in 6j, 17.7% in 7j

ROC from detection probability (explained later)X: false ID in unreconstructable eventsY: efficiency in reconstructable events

New Features: Regression of Kinematics

- SPA-Net can now train to reconstruct $t\bar{t}$ & simultaneously train to regress a variable (e.g. neutrino η or p_z , $t\bar{t}$ invariant mass)
- Neutrino η is more diagonal than the traditional method w/ improved RMS (1.39 \rightarrow 0.9).

$t\bar{t}H(\rightarrow b\bar{b})$ semi-leptonic

- $t\overline{t}b\overline{b}$ background is rather large with very similar kinematics to $t\overline{t}$ H.
- *t* & H kinematics are main inputs to the BDT.
- However, the fraction of reconstructable events is only 35% in $t\bar{t}$ H semi-lep. events.
- "Goodness" of the jet-parton assignment is also important to remove unreconstructable events. → i.e. likelihood for KLFitter, a score for permutation DNN

Updates: SPA-Net Probabilities & Entropies

- Defined for each particle to reconstruct (t, H). 9 probabilities & 3 entropies in total for ttH. SPA-Net can provide detailed information on the goodness of jetparton assignment.
- **Detection probability:** Is t or H reconstructable?
- Assignment probability: Given t or H is present, are the predicted jets correct?
- (Pseudo-)marginal probability: essentially the product of the two above
- Entropy: $-\Sigma(P \times \log P)$ over singlets/doublets/triplets represented as matrix P=NxNx...N

$t\bar{t}H(\rightarrow b\bar{b})$ semi-leptonic

- Two analysis styles compared in this study:
- **1. Traditional analysis style using BDT** using reconstructed kinematic variables **after the jet-parton assignment** (KLFitter, permutation DNN, SPA-Net).

2. Pure SPA-Net-driven method

New Features: Signal/BG Discrimination

- SPA-Net outperforms existing methods! (AUC=0.704, 0.708)
- A new feature in SPA-Net can provide ttH/ttbb discrimination directly. → Best performance w/ fine-tuning! (AUC=0.744→0.771)
- SPA-Net jet-parton assignment and BDT w/ kinematics & probabilities also has excellent performance. (AUC=0.762)
 - Including particle probabilities in BDT is VERY important

Transformer architecture provides us with meaningful embeddings for every jet, particle, and event: a big benefit over permutation-based models

$Z' \rightarrow t\bar{t}$ Searches

- Successful reconstruction of top quarks is crucial for the $t\bar{t}$ resonance searches (e.g. Z', RS Graviton, Heavy Higgs A/H $\rightarrow t\bar{t}$).
- $Z' \rightarrow t\bar{t}$ searches are already dominated by systematic uncertainty. Adding more data would not help much & reduction of systematics and/or dramatic improvement in analysis strategies is necessary.
- SPA-Net provides significantly improved mass reconstruction from KLFitter.

Impact on $Z' \rightarrow t\bar{t}$ **Searches**

- Also, SPA-Net probabilities allow us to select signals while significantly suppressing the BG.
- Evidence or discovery could happen even if not doable w/ traditional methods. (e.g. 1.9σ →4.3σ for Z'(900 GeV))

	KLFitter	PDNN	Spa-Net	Spa-Net w/ ν η
$m_{Z'} = 500 \text{ GeV}$	1.24σ	1.75σ	2.75σ	2.71 σ
$m_{Z'} = 700 { m ~GeV}$	1.63σ	2.45σ	3.06σ	2.87σ
$m_{Z'} = 900 \text{ GeV}$	1.94 σ	2.77σ	4.30 σ	4.13 σ

CPU/GPU Time

A. Shmakov, M. Fenton et al., SciPost Phys. 12, 178 (2022)

- A few orders of magnitude improvement w/ SPA-Net compared to χ² or KLFitter. A further acceleration w/ GPU.
- One order of magnitude faster than permutation DNN for ttH (i.e. high multiplicity events)!

	ttH semilep	Z′→ttbar semilep
SPA-Net	3534 events/s [GPU] 852 events/s [CPU]	4407 events/s [GPU] 705 events/s [CPU]
Perm. DNN	101 events/s [GPU] 51.4 events/s [CPU]	3034 events/s [GPU] 2626 events/s [CPU]
KLFitter	1.95 events/s	24.4 events/s

Selling Points of SPA-Net over Perm. DNN

- 1. Better reconstruction efficiency for top quarks (or any other particle of interest)!
- 2. Provides detailed quality metrics (particle-level scores) to remove unreconstructable events (3 probabilities & entropy for each particle)
- 3. Can run regression/classification in parallel.
- 4. Less hyperparameter optimization needed
- 5. It's MUCH faster!

SPA-Net Package (new version!)

https://github.com/Alexanders101/SPANet

SPA-Net is not limited to top physics!

New features in v2:

- 1. New configuration file format with more options on inputs and event topology.
- 2. Allow for several different inputs, including global inputs (e.g. MET, MET ϕ) for additional context.
- 3. New Regression and Classification output heads for performing per-event or per-particle predictions.
- 4. Gated transformers and linear layers for more robust networks. Less hyperparameter optimization.

Considering Symmetries - Lorentz Invariance

- Adding Lorentz invariance to the network does not change the jetparton assignment accuracy for most cases, but improves the performance for small datasets.
- Lorentz invariance brings visible improvement in speed: i.e. significant reduction of batches needed to train the network.

Investigations motivated by C. Li et al., arXiv:2208.07814

Summary

- SPA-Net provides efficient & excellent performance for event reconstruction in complex final states from multi-objects.
 - Superb CPU/GPU time, no limitation on object/jet multiplicity
 - Possible application to any jet-parton or even any "X"-"Y" assignment problem
- Transformer architecture provides us with meaningful embeddings for every jet, particle, and event: a big benefit over permutation-based models.
 - Reconstruction of missing components (e.g. neutrino η),
 - Direct signal/background discrimination,
 - Quality metrics to reject unreconstructable events.
- References:
 - M. Fenton, A. Shmakov et al., Phys. Rev. D 105, 112008 (2022)
 - A. Shmakov, M.Fenton et al., SciPost Phys. 12, 178 (2022)
 - Studies presented today, paper in preparation.