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u Super Tau Charm Facility

u DIRC-like time-of-flight detector

u PID Based on Convolutional Neural Network

u PID Based on Quantum Convolutional Neural Network

u Summary



The Super Tau Charm Facility (STCF) proposed in China is a new-
generation facility of electron positron collider
• the peak luminosity above 0.5!1035 cm−2s−1

• center-of-mass energies covering 2-7 GeV
• potential for further upgrading to improve the peak luminosity and realize beam 

polarization in the future

Ø Rich of physics with c quark and 𝜏 leptons

Ø Important playground for study of QCD, hadron physics

Ø Search for new physics beyond the Standard Model

Broad Physics at tau-charm Energy Region
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From the interaction point outward, the STCF detector consists of a tracking 
system(ITK and MDC), a particle identification (PID) system, an electromag-
netic calorimeter (EMC), a superconducting solenoid (SCS) and a muon 
detector (MUD).



The PID is one of the most fundamental tools in various physics studies. The PID for the full momentum 
range is essential for charm physics studies and fragmentation function studies.
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Ø The identification of hadrons in the low momentum range is achieved through measurements of the specific energy loss 

rate (dE/dx) by the MDC. 

Ø The identification of leptons and neutral particles is provided by the EMC and the MUD. 

Ø To enhance PID and charged hadrons in the high momentum range, the PID system of the STCF is designed

The PID system uses two different Cherenkov detector technologies:
• a Ringing Imaging Cherenkov detector (RICH) in the barrel 

• a time-of-flight detector based on the detection of the internal total-reflected 

Cherenkov light (DTOF) in the endcap

to achieve a 3σ separation between kaons and pions with a momentum up to 4 GeV/c.
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The DTOF consists of two identical endcap discs positioned at ∼ ±1400 mm away from the collision point along the 
beam direction. Each disc is made up of several quadrantal sectors, with an inner radius of ∼ 560 mm and an outer 
radius of ∼ 1050 mm.

• covering in polar angles of ∼ 22◦ − 36◦

• synthetic fused silica radiator

• Photoelectric Detection: Multi-Anode PMT

Schematic layout of the STCF detector concept
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Building likelihood probability density function based on reconstructed TOF distribution

Qi, B et al., DIRC-like time-of-flight detector for the experiment at the 
Super Tau-Charm Facility. Journal of Instrumentation, 16(08), P08021.
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The likelihood method 

To exploit the PID performance of DTOF, we developed a convolutional neural network (CNN) for pions/kaons 
identification.

Ø Utilizes the timing information of different particle hypotheses

Ø But ignores spatial information (topology of photons)

• X-label: the hit position of Cherenkov collected photon by PMT   
• Y-label: the arrival time of Cherenkov collected photon by PMT   
• Value:  the number of photons within this bin

The pixel map of photons:

The image-like data represents the topologies of Cherenkov photons generated 
by different particles



convolution
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single event

CNN consists of interlaced convolutional layers and pooling layers, and ends with a fully connected layer.

l The primary purpose of the convolution layer is to extract new hidden features using convolution kernels 

l The pool layer is used to reduce the dimension of data, reducing the resources required for learning and avoiding overfitting

l The full connection layer adopts softmax full connection, and the activation value obtained is the picture feature extracted by 

convolutional neural network.
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Ø pi+ : pi- : k+ : k- = 1 : 1 :1: 1

Ø 0.6 Gev < p < 2.4 Gev

Ø 23° < theta < 35°

MC sample is produced with the Offline Software of Super Tau-Charm Facility (OSCAR)

• 0 ≤ channel ≤ 868

• 5.5 ≤ time ≤ 15.5 ns

• Bin number: channel * time = 217 * 200

(

the number of photon 2D chnanel-time
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‣ training set: 200k
‣ validation set :100k
‣ test set : 100k

Test set accuracy : 92.86%

The preliminary results show the CNN model has a promising performance against the pion/kaon identification.

The structure and parameters of CNN: Data set:‣ Conv2D (16, (3, 3), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Conv2D (32, (3, 3), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Conv2D (32, (3, 3), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Flatten(), Input((p, theta)), Concatenate()([model.output, input_features])

‣ Dense(256, activation='relu’), Dropout(0.2), Dense(2)

‣ learning_rate = 0.00001, batch_size = 128 Background efficiency not exceeding 3%
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Question: can we do better with the help of quantum machine learning?

• Quantum machine learning: under the domain of quantum computing/algorithm

Ø Provide alternatives/enhancement for traditional machine learning algorithms

Ø It utilizes high-dimensional Hilbert space through superposition and entanglement to explore more useful 
information.

• Potential quantum advantage for ML problems

• Basic idea: use a quantum device to extract features from the origin image-like data, before feeding 
data into the CNN

• Based on the classical CNN, a quantum convolution neural network (QCNN) is developed as a proof-
of-concept work exploring possible quantum advantages provided by quantum machine learning 
methods.



1. Data Encoding Circuit 
Because existing quantum computers are still limited to small quantum systems, the quantum convolution layer does not apply 

the entire image map to a quantum system at once, but processes it as much as the filter size at a time.

A small region of the input image, in our work a 2×2 square, is embedded into a quantum circuit. This is achieved with RX 

rotation gate applied to the qubits initialized in the |0> state.
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Leveraging the capabilities of the TensorFlow Quantum and Cirq Simulator platforms, we have developed a 
trainable quantum convolution layer that can replace the traditional convolution layer in CNN.

. 

http://doi.org/10.1109/ICTC49870.2020.9289439

http://doi.org/10.1109/ICTC49870.2020.9289439


2. Quantum convolutional Kernel
Utilize a parameterized variational quantum circuit to take spatially-local subsections of images from a dataset as input. In our 

work, we use some entanglement gates with a parameterized phase.

3. Decoding

The decoding process gets new classical data by measurement quantum states.

According to the basic principle of quantum mechanics, the expectation value for measuring the observable is deterministic.
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CXPowGate CZPowGate

The quantum convolution can be followed by further classical CNN layers

In the standard language of CNN, this would correspond to a 
convolution with a 2×2 kernel and a stride equal to 1.



QCNN achieved similar performance to CNN in same dataset.
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‣ QCONV(1, (2, 2), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Conv2D (16, (2, 2), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Flatten(), Dense(128, activation=‘relu’), Dense(2)

‣ learning_rate = 0.0001, batch_size = 16

The 217×200 size MNIST dataset was downscaled to 32×32 size

training set: 20k
validation set : 10k
test set : 10k

The structure and parameters of QCNN:

Data set:
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Design of Variational Circuits

More parameterized quantum gates lead to 
performance improvement
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Entanglement operations also contribute to the 
performance improvement



• Targeting at the Pion/Kaon identification problem at STCF, a CNN is developed taking the photon hit 

positions and photon arrival times as inputs

• The preliminary results show that the CNN model has a promising performance for the Pion/Kaon ID 

problem

• To explore better performance, a quantum CNN that uses a trainable quantum convolutional kernel are 

developed.

• The quantum version of CNN acheives similar performance comparing to classical CNN on small datasets.

• Further studies are still in progress, as a proof-of-concept of using QCNN to process HEP experiment data.
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Thank you！


