1. IE browser is NOT supported anymore. Please use Chrome, Firefox or Edge instead.
2. If you are a new user, please register to get an IHEP SSO account through https://login.ihep.ac.cn/registlight.jsp Any questions, please email us at helpdesk@ihep.ac.cn or call 88236855.
3. If you need to create a conference in the "Conferences, Workshops and Events" zone, please email us at helpdesk@ihep.ac.cn.
4. The max file size allowed for upload is 100 Mb.
11–14 Aug 2023
学术报告厅
Asia/Shanghai timezone

Reconstruction of Atmospheric Neutrino's Directionality and Energy in JUNO

Not scheduled
20m
学术报告厅

学术报告厅

青岛蓝谷国际酒店
Talk Machine Learning

Speaker

泽坤 杨 (S)

Description

The Jiangmen Underground Neutrino Observatory (JUNO) is a next-generation neutrino experiment currently under construction in southern China. Its primary objective is to determine the neutrino mass ordering (NMO). While reactor neutrinos are the main source of sensitivity to NMO at JUNO, atmospheric neutrino oscillations can provide independent sensitivity, and enhance its overall sensitivity in the combined analysis. However, accurately reconstructing atmospheric neutrinos in such a large liquid scintillator detector presents a significant challenge with conventional methods. In this flash talk, I present a novel method of reconstructing atmospheric neutrinos in JUNO and it is applicable to other liquid scintillator detectors. This method uses machine learning techniques to reconstruct multiple quantities like atmospheric neutrinos’ directionality and energy, based on features extracted from waveforms reflecting the relationship between PMT hit charge and time. Performances using this method with JUNO simulation are reported.

Primary authors

Presentation materials