HEP ML Lab

An end-to-end framework for machine learning application in
high energy physics

Jing Li, Hao Sun
Quantum Computing and Machine Learning Workshop (2023)

1

Table of contents

* Introduction: why we need an end-to-end framework"?
* Quick start: generate events, create datasets, apply methods

* Future: roadmap and contribution

Introduction

Reproduction problems

* A large amount of work explores the
performance improvement brought by Limit
machine learning methods. Results are

promising for the new physics search. ===Work2 ==
 However the lack of source codes === Work === |
makes it quite difficult to reproduce |
the results. 10 new ML
8 ML

* |If they are generated under different

conditions, at what extent we can 1 g

say that new methods are truly o

powerful and worth to try in broader ML is powerful New one is not as good

subjects? as the previous one

Introduction

Control from end to end

« HEP ML Lab (HML) stands for high

: . : Generate events
energy physics and machine learning.

» An end-to-end framework for applying l Event: .lhe ' .hepmc .root

machine learning into HEP studies.
Create datasets

« Simplify the data flow: easier to :
manage and track different data. l Dataset: yaml .Npz

» Unify programming style across all Apply methods
stages: objected-oriented and Keras. I

 All makes the results more reliable and ‘!L
reproducible.

Checkpoint: Json pkl .S

Later analysis

Introduction

Comparison with others

Name Data | Model Style Highlight
hep ml No Yes sklearn Low correlation, theano-based, sklearn compatible
weaver Yes Yes CLI + config Support many dataset formats, config for all
JetNet Yes No custom Three datasets, generative evaluation metrics
pd4mil Yes Yes modified Keras Five datasets, model templates
MLAnNalysis Yes Yes custom LHE/LHCO data, three ML algorithms
mapyde Yes No | CLI + TUI + config Madgraph5 workflow, for a specific problem
madminer Yes Yes custom Madgraph5 workflow, for a specific problem
hep-mi-lab Yes Yes Keras Madgraph5 workflow, not specific for one problem

* Data: data generation and/or dataset interface support.

 Model: machine learning models and/or other methods.

5

https://github.com/arogozhnikov/hep_ml
https://github.com/hqucms/weaver-core
https://github.com/jet-net/JetNet
https://github.com/erum-data-idt/pd4ml
https://github.com/NBAlexis/MLAnalysis
https://github.com/scipp-atlas/mapyde
https://github.com/madminer-tool/madminer
https://github.com/Star9daisy/hep-ml-lab

gl Francois Chollet @ @fchollet-2023/7/11
28 We're launching Keras Core, a new library that

Introduction
brings the Keras APl to JAX and PyTorch in

COmpariSOH with others addition to TensorFlow.

| It enables you to write cross-framework deep
« HEP ML Lab emphasizes: learning components and to benefit from the
best that each framework has to offer.

e data control from the very

beginning, event generator. Read more: keras.io/keras_core/ann...

e concise and consistent

training style of Keras Ke rads

=~ Keras announces to be a Introducing Keras Core:

multi-backend Wrapper, bringing Keras for TensorFlow, JAX, and PyTorch.
more possibility for the future.

O 118 12 1061 @ 4035 |, 8058 T,

Quick start

Generate events

¢ Let,S fII’St generate SOme eveﬂtS 1 from hml.generators import Madgraph5

signal_generator = Madgraph5(

* /Z boson to dijet as signal. . executable="ng5_aMC",

processes=["pp>2z2, z>3j j, z > ve ve~"],
output="./data/pp2zz",

« QCD jets as background. shower="Pythias",

detector="Delphes",
settings={

« "generate events" and "add) s
process” are "processes’ Now. N ~ ntgmia: 400,
')
« "output", "launch" as usual.

signal_generator. Llaunch()

. . . ; sig_run = signal_generator.runs[0]
¢ CheCk |nf0 aﬂ:er fIﬂIShIﬂg a run 19 print(f"cross section (pb): {sig_run.cross_section}")

print(f"number of events: {sig_run.n_events}")

Quick start

Generate events

 Most parameters are moved into | EoEelnn) G
iniFi1Aali ' 2 R ' Pythia8...
initialization so that launch starts 3 Running Dalphes. ..
generation immediately. + Storing files...
6 cross section (pb): 0.00077034
° |nfO iS extracted frOm / number of events: 10000
print_results command of
MadEventS Processes: ['pp >z 2, Zz> 1+ 1l-, Zz>] j']

n Name (N subruns) - Cross section +- Error pb

run_01 (1) _ 6.63090e-01 +- 8.13908e-03 100
run_02 (2) 6.63090e-01 +- 8.13908e-03 100

* Change settings and launch your
next run. Get summary of all runs
via summary method.

run_03 (3) 6.63334e-01 +- 3.99329e-03 300

print_results itself has bugs

Quick start

Create datasets

 (Generator produces events in
"raw" format.

e Data then Is transformed into
proper representation.

* Finally, combine data and labels
Into a dataset.

Raw events

l .lhe

Representation

l Set

Dataset

yml

.hepmc

Image

.Npz

.root

Graph

Quick start

Create datasets

. Set: 1D (N x F)

 Use a set of observables to
represent an event or a jet.

. Image: 3D (N x H x W x C)

* Project particles onto a 2D
plane.

e Graph:2D (Nx P x F)

 Record particles' features.

10

[1709.04464] Jet Substructure at the Large Hadron Collider:
A Review of Recent Advances in Theory and Machine Learning

Variable
sets

Quick start

Create datasets

* MG5Run ||n!(S d IaunChed run 1 from hml.generators import MG5Run
and resolve it to get InfO_ 2 from hml.observables import DeltaR, M, Pt
3 from hml.representations import Set
° We deCIare d Set dsS deﬁned: d - sig_run = MG5Run("./data/pp2zz/Events/run_01/")
set of Observable. 5 bkg_run = MG5Run("./data/pp2jj/Events/run_01/")
. . . . representation = Set(
e |nstead of indexing physics ;]
objects directly in event loop, iiije:;;
: 1 1 "Jet2"),
short names like "Jet1" are used e e)

to find specific objects. ; M("FatJet1"),

11

Quick start

Create datasets

| oop over events to fill the data
and targets.

* This step aims to inject
preselection to all events.

* [o avoid time-consuming event
loop, we're about to change
backend from PyROOT to

Uproot in later release.

12

import numpy as np

data, target = [1, []

for event in sig_run.events:
if event.Jet size >= 2 and event.Fatlet size >= 1:
representation.from_event(event)
data.append(representation.values)
target.append(1)

for event in bkg_run.events:
if event.Jet size >= 2 and event.Fatlet size >= 1:
representation.from_event(event)
data.append(representation.values)
target.append(0)

data = np.array(data, dtype=np.float32)
target = np.array(target, dtype=np.int32)

Quick start

Create datasets

« Complete the dataset with other
information.

from hml.datasets import Dataset

 Dataset is saved into two parts 3 dataset = Dataset(
| data,
» metadata: Re-init a Dataset ' e .
_ : feature_names=representation.names,
ObjeCt. | target_names=["pp2jj", "pp2zz"],
: description="Demo dataset for Z vs QCD jets.",
» dataset: Dataset value itself. dir_path="./data/z_vs_qcd",

)

dataset.save(exist ok=True)

13

Quick start
Apply methods

* Designed to contain three kinds of
methods:

e cut and count
e free

e neural networks

Event density

14

le?

5
—— Prediction

————— True background class
————— True signal class
s Optimal cutoff

4 i

Classifier output

(a) XGBoost with optimized cutoff at 0.9081.

[2108.03125] Beyond Cuts in Small Signal Scenarios

[2206.09645] Booste

decision trees

Quick start

Apply methods

What does structure it have?

compile(optimizer, loss, metrics) How to improve the weights?

Keras

evaluate(x, y) How performant is it on other data? 1' Te nSOrFIOW

summary() Show model information : . P T h

predict(x) Given data, what is predicted value?

fit(x, y, epochs...) Other parameters of train process

Method is the minimum wrapper of Keras Model.

15

Quick start
Apply methods

* Load dataset frOm preVIOUS 1 from hml.datasets import Dataset
ESEi\/E}(j I()(:Eiti()r]_ 2 from keras.utils import to_categorical

from sklearn.model_selection import train_test_split

o Split train & test sets with fixed
random seed.

dataset = Dataset.load("./data/z_vs_qcd")

x_train, x_test, y_train, y_test = train_test_split(
dataset.data,

e One-hot encoded label to enable dataset. target,

. = 11 test size=0.2,
following Metrics. B

y_train = to_categorical(y_train, dtype="int32")
y_test = to_categorical(y_test, dtype="int32")

16

Quick start
Apply methods

hml.methods import BoostedDecisionTree, CutAndCount, ToyMLP
hml.metrics import MaxSignificance, RejectionAtEfficiency

keras.losses import CategoricalCrossentropy
keras.metrics import CategoricalAccuracy

 MaxSignificance calculates the maximum significance under uniform distributed
thresholds.

—

S
significance = \ 21 S+B)n(l1+—)-S5

B

- RejectionAtEfficiency (1/¢, at ¢, = 50 %) calculates the background rejection at
a given signal efficiency.

17

Quick start
Apply methods

* Follow the training workflow

* Initialize methods to define
their structure respectively.

« Compile each to determine
how to improve itself and
monitor performance.

* Fit methods' weights on
dataset.

18

BoostedDecisionTree(n_estimators=10)
CutAndCount(n_bins=100)

ToyMLP(input_shape=(x_train.shape[1],))

.compile(

loss=CategoricalCrossentropy(),

metrics=[
CategoricalAccuracy(name="acc"),
MaxSignificance(name="max_sig"),
RejectionAtEfficiency(name="r50"),

1,

.compile(...)
.compile(...)

fit(x_train, y_train)
Fit(...)
Fit(...)

Quick start
Apply methods

Cut 1/4 - loss: 1.9366 : max_sig: 113.1778 rso: 8.2616

Cut 2/4 - loss: 2.1924 : max_sig: 173.7675 rso: 15.8622
Cut 3/4 - loss: 3.8445 : max_sig: 209.4424 rso: 23.7669
Cut 4/4 - loss: 4.3686 : max_sig: 237.2822 - r50: 31.6540

Iter 1/10 - loss: 1.2097 - acc: - max_sig: 209.1248 - r50: 793.0361
Iter 2/10 - loss: 1.0733 - acc: - max_sig: 270.3814 - r50: 185.3986
Iter 3/10 - loss: 0.9599 - acc: - max_sig: 327.6703 - r50: 669.1434

Epoch
51/51 : 0.9719 - acc: 0.8862 - max_sig: 186.6020 - r50: 31.5840 - &s/epoch - /step
Epoch
51/51 : 0.8845 - acc: 0.8881 - max_sig: 204.8537 - r50: 38.1710 - 4is/epoch - /step
Epoch
51/51 : 0.7423 - acc: 0.8981 - max_sig: 209.3404 - r50: 44.6123 - is/epoch - /step

* Similar training histories. They can be retrieved by returned value of fit.

19

Quick start
Apply methods

from tabulate import tabulate

resultsl methodl.evaluate(x_test, y_test)

results2 method2.evaluate(x_test, y_test)

results3 method3.evaluate(x_test, y_test, verbose=2)
results = {}

results["name"] = [methodl.name, method2.name, method3.name]
for k in resultsl.keys():
results[k] = resultsi[k] + results2[k] + results3[k]

print("> Results:")
print(tabulate(results, headers="keys", floatfmt=".4f"))

> Results:

name loss
boosted decision _tree 0.2611
cut_and _count 4.4163
toy_mlp 0.5475

max_sig

601.7032
243.9667
111.5401

rso

647.3771
33.6241
444 ,2333

* Evaluate methods using metrics defined in compile methods. Could also compile

once again to use other metrics.

e | ater more metrics will be added to complete benchmark.

20

Future

Roadmap

e 0.2.X

2enodo GitHub

w Hugging Face

 Add random seed, batch run, auto tag

 Change backend from PyROOT to Uproot

e 0.3.X
* Support loading data from Zenodo, Hugging Face, GitHub, kaggle
o Support image and graph representation and ToyCNN, ToyGNN to test

* 0.4.x protocol to keras

21

Future

Contribution

« HEP ML Lab itself contributes to Scikit-HEP.

 Based on core packages of this community.

» Support the principle of minimum dependency. ﬁPrOOt

AWkAWard
rray

 We also welcome contributions from community.

 Make your work reproducible more and more. VEl I L

o Currently, we are refactoring our work: [2303.15920] Probing Heavy Neutrinos at
the LHC from Fat-jet using Machine Learning.

Thank YOU!

22

