

BESIII track reconstruction algorithm based on machine learning

<u>Xiaoqian Jia¹</u>, Xiaoshuai Qin¹, Teng Li¹, Xingtao Huang¹, Xueyao Zhang¹, Yao Zhang² and Ye Yuan²

1. Shandong University, Qingdao

2. Institute of High Energy Physics, Beijing

Quantum Computing And Machine Learning Workshop August 14, 2023

Outline

01 Motivation

02 Methodology

Filtering Noise via GNN

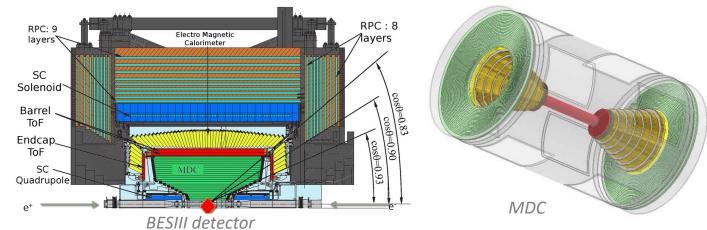
Clustering of Tracks Based on DBSCAN and RANSAC

- **03** Preliminary Results
- **04** Summary

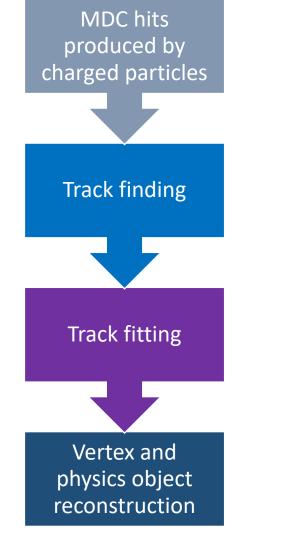
01 BEPCII & BESIII

- Beijing electron-positron collider (BEPCII)
 - Peak luminosity : 10^{33} cm⁻² s⁻¹
 - CMS: 2.0 4.95 GeV, τ -charm region
 - World's largest J/ψ dataset : 10 billion
- Beijing Spectrometer (BESIII)
 - Study the electroweak and strong interactions
 - Search for new physics
- Main Drift Chamber (MDC)
 - 43 sense wire layers
 - dE/dx resolution : 6%
 - Momentum resolution : 0.5%@1GeV/c

Aerial view of the BEPCII

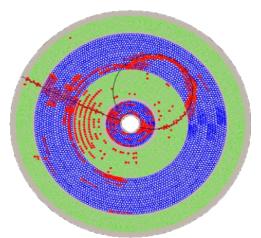


01 Traditional tracking of BESIII drift chamber



◆ Identify measurements to individual tracks

- Global method : Hough transform (HOUGH)
- Local method : Template matching for segment (PAT)
 - Seeding and road following (TCurlFinder)
- Estimate the track parameters
 - Kalman filter
- Estimate charged particles properties
 - Momentum and direction
 - Charge

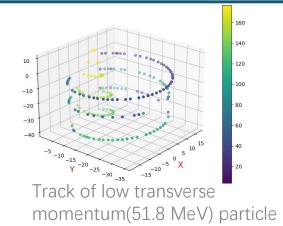


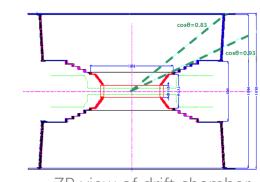
01 Motivation

Further optimizations: Increase the tracking efficiency

and performance for special events

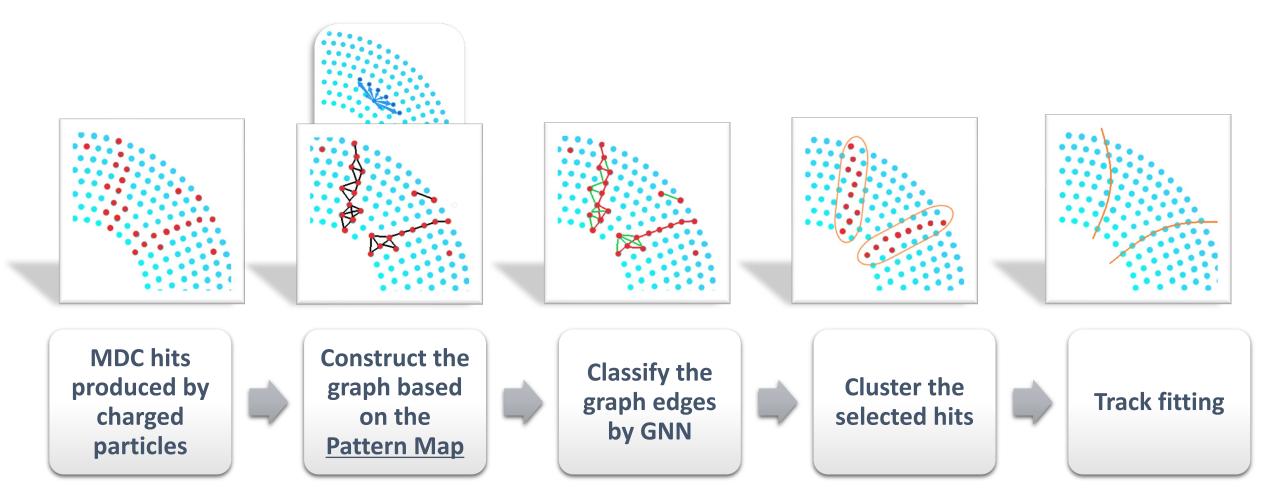
- Low transverse momentum
- Large dip angle
- Secondary vertex
- New Challenge: Higher Background and noise with the upgrade of BEPCII
 - Noise hit resistance
- But the optimization of the traditional tracking algorithm could be very challenging
- Goals of this study
 - Explore the new tracking method with novel technologies
 - GNN, DBSCAN...
 - Develop experiment independent tracking with 2-D measurement (drift chamber) for other experiments (i.e. STCF, CEPC ...)





ZR view of drift chamber

Methodology: workflow

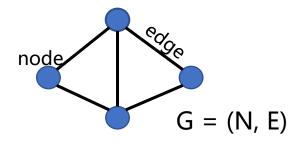


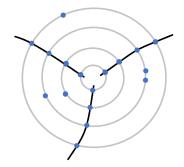
02 Graph Neural Network

- A type of neural network that are specifically designed to operate on graph-structured data
- ♦ Graph: nodes, edges
- ♦ Graph → Track
 - Nodes → Hits
 - edges → track segments
- GNN key idea: propagate information across the graph using a set of learnable

functions that operate on node and edge features

- Graph Neural Network edge classifier
 - High classification score
 - \rightarrow the edge belongs to a true particle track
 - Low classification score
 - \rightarrow it is a spurious or noise edge





02 Graph construction

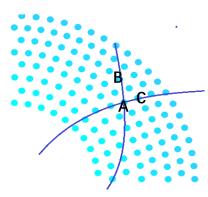
Pattern Map based on MC simulation

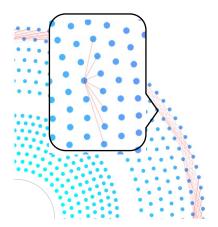
To reduce the number of fake edges during graph construction

- Definition of valid neighbors
 - Hits on the same layer
 - Two adjacent sense wires on the left and right
 - Hits on the next layer

The collection of sense wires that could potentially represent two successive hits on a track

- MC sample used to build pattern map
 - Two million single tracks produced with BESIII offline software (BOSS)
 - 5 types of charged particles (e^{\pm} , K^{\pm} , μ^{\pm} , p^{\pm} , π^{\pm})
 - 0.05 GeV/c < P < 3 GeV/c
- Edge assignment based on Pattern Map
 - Hit with its neighbors on the same layer and next layer
 - Hit with its neighbors' neighbors on one layer apart
- To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut
- Graph representation
 - Node features (raw drift time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

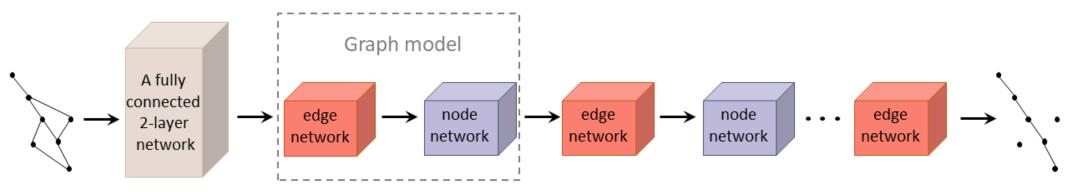




A wire on layer13 and tits neighbors on layer14

02 GNN edge Classifier based on PyTorch

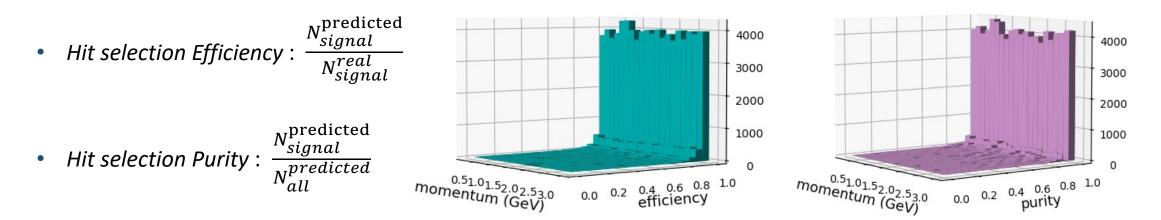
- Input network
 - Node features embedded in latent space
- Graph model
 - Edge network computes weights for edges using the features of the start and end nodes
 - Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
 - MLPs
 - 8 graph iterations
- Strengthen important connections and weaken useless or spurious ones



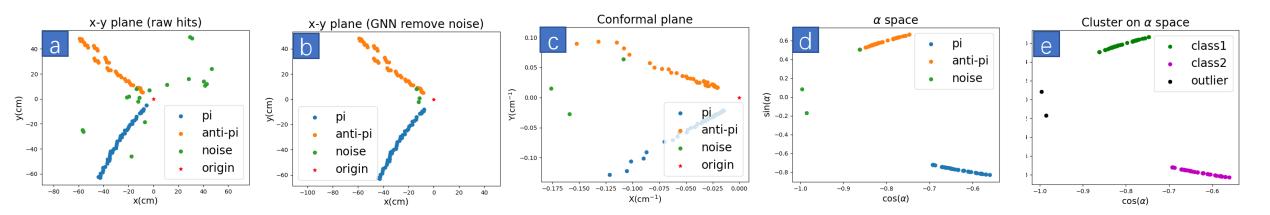
02 Performance of filtering noise

Dataset

- Single-particle (e^{\pm} , K^{\pm} , μ^{\pm} , p^{\pm} , π^{\pm}) MC sample
- 0.2 GeV/c < P < 3.0 GeV/c
- Mixed with BESIII random trigger data as background (~45% hits)
- Train: Validation: Test = 4: 1: 1
- Hit selection performance
 - The preliminary results show that GNN provides high efficiency and purity of hits selection



02 Clustering of Tracks Based on DBSCAN



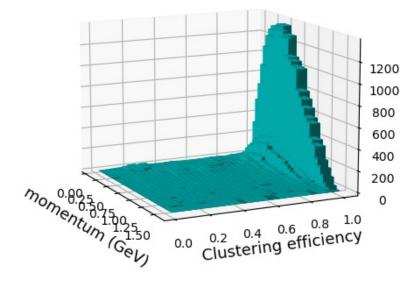
- a) Original MC data sample
 - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
 - π⁺, π⁻ : Pt (0.2GeV 1.4GeV)
- b) Remove noise via GNN
- c) Transform to Conformal plane

• $X = \frac{2x}{x^2 + y^2} Y = \frac{2y}{X^2 + y^2}$

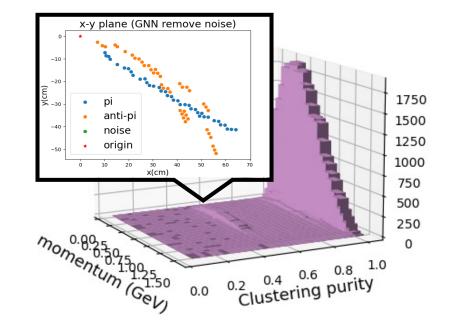
• Circle passing the origin transform into a straight line

- d) Transform to ' α ' parameter plane
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as cosα and sinα
- e) DBSCAN clustering in ' α 'parameter plane
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track

02 DBSCAN Performance

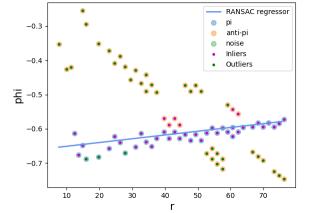


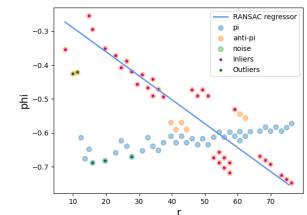
- DBSCAN can achieve high clustering efficiency ($\frac{N_{track}^{\text{predicted}}}{N_{track}^{real}}$
- An obvious bulge at the purity $\left(\frac{N_{cluster}^{real}}{N_{cluster}^{all}}\right)$ of about 0.5
 - Can not separate hits from the two very close tracks
 - It accounts for about 3.5%

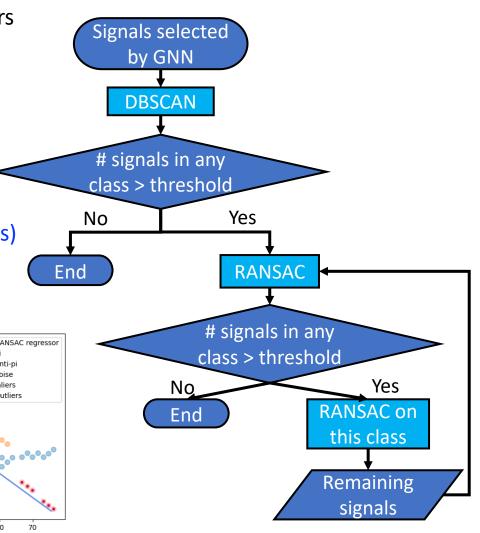


02 Optimizations

- Random sample consensus (RANCAS)
 - Estimate a mathematical model from the data that contains outliers
 - Its good robustness to noise and outliers
 - Model can be specified
- RANCAS is triggered by the events that DBSCAN processing fails
 - Polar coordinate space
 - linear model (being optimized to a more suitable model for tracks)
 - Inliers \rightarrow a track , outliers \rightarrow other tracks
 - Stop condition: outliers < threshold

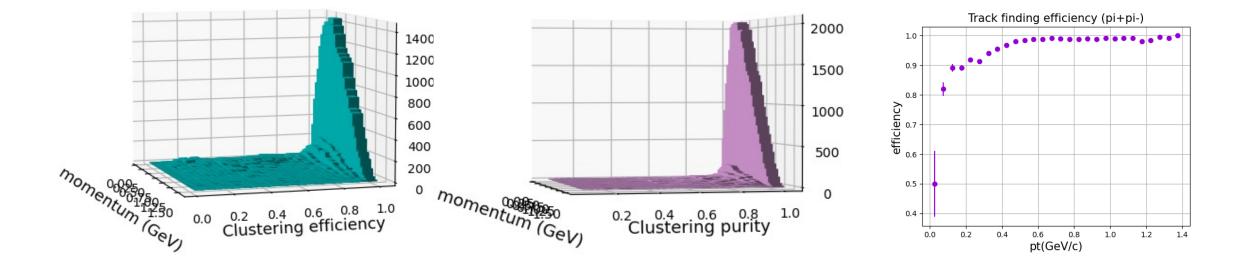






02 Results after Optimizations

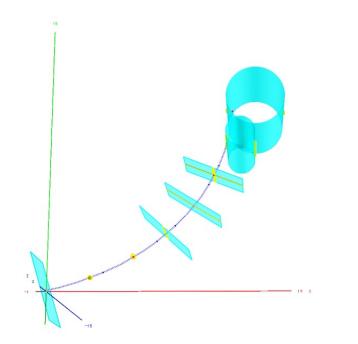
- Removed bulges at purity
- Track finding efficiency
 - track eff = $\frac{N_{\text{rec tracks}}}{N_{\text{total tracks}}}$
 - Pt > 0.2 GeV/c , track eff > 90%
 - Pt > 0.45 GeV/c , track eff > 98%



02 Track fitting

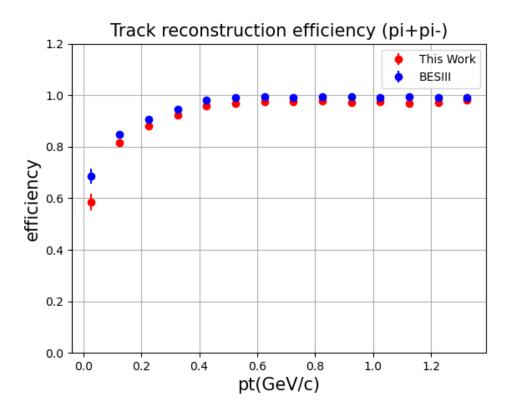
Genfit2

- A Generic Track-Fitting Toolkit
- Experiment-independent framework
- PANDA, Belle II, FOPI and other experiments
- Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements



03 Preliminary Results

- Particle reconstructed performance
 - $J/\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$ from MC simulation
 - The preliminary results presents promising performance



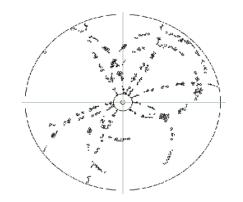
04 Summary

◆ A novel tracking algorithm prototype based on machine learning method at BESIII is under development

- GNN to distinguish the hit-on-track from noise hits.
- Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks
- Preliminary results on BESIII MC data shows promising performance

Outlook

- Further optimization of the model is needed
 - To improve performance for low PT tracks
- Performance verification concerning events with more tracks



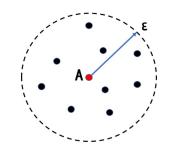
Thank you !

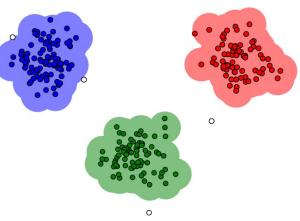
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- A density-based clustering algorithm that can automatically discover clusters of arbitrary shapes and identify noise points
- Robust to outliers
- Not require the number of clusters to be told beforehand

Parameter

- Epsilon (radius of the circle to be created around each data point)
- MinPoints (the minimum number of data points required inside that circle for that data point to be classified as a Core point)
- Choose MinPoints based on the dimensionality (≥dim+1), and epsilon based on the elbow in the k-distance graph





RANSAC (Random Sample Consensus)

- Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the remaining data points belong to the inlier set by calculating their distances to the model
- Accurately estimate model parameters even in the presence of noise and outliers
- The specific steps
 - Randomly select a small subset of data, called the inlier set
 - Fit a model based on the inlier set
 - Calculate the distances between the remaining data points and the model, and classify these points as inliers or outliers based on a certain threshold
 - If the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered good
 - If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached
- Parameters such as threshold and iteration times need to be preset