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Introduction to JUNO: overview
• Neutrino oscillation is of great theoretical and 

experimental interest.
• It implies that the neutrino has non-zero mass, 

which requires a modification to the Standard 
Model of particle physics. 
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Introduction to JUNO: overview
• The Jiangmen Underground Neutrino Observatory 

(JUNO)
• A next-generation neutrino experiment.
• Scientific goals:
• Determine the neutrino mass ordering (NMO);
• improve the precision of neutrino oscillation 

parameters;
• SuperNova, Solar, Atm. Geo. etc

• Largest liquid scintillator detector bring a superb 
energy resolution.
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Introduction to JUNO: detector
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More than 2 meters of water, vetoing external 
background.

PMTs to detect and collect neutrino events:
• 17,612 20-inch PMTs (used in this study);
• 25,600 3-inch PMTs.
75% PMT coverage.

20,000 tons of liquid scintillator (LS).

700m underground, blocking cosmic rays 
through rocks.



Reactor neutrinos:
Sensitivity to NMO via 
oscillation in vacuum

Introduction to JUNO: atmospheric neutrinos
• Atmospheric neutrinos are from cosmic rays 

interacting with upper atmosphere:
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Atmospheric neutrinos:
Sensitivity to NMO via 
oscillation with matter effect



Introduction to JUNO: atmospheric neutrinos
• The measure of atmospheric neutrino oscillations 

has great potential to enhance JUNO’s NMO 
sensitivity. 
• Neutrino oscillations probability 𝑃 = 𝑓(!

"
).

• Recostrction of atmospheric neutrinos:
• Zenith angle 𝜃;
• Neutrino energy;
• Flavor (PID).
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Introduction to JUNO: atmospheric neutrinos
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• Directionality measurement in large homogeneous LS detectors, 

however, is very challenging:

1. LS detectors do not offer direct track information. 

2. Cherenkov light, while offering excellent directional information in 

Water detectors, is about two orders of magnitude weaker than 

scintillation light in a typical LS detector.

• So we turned to scintillation light for directionality
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Methodology: physics process

• The hit time of the earliest photon reaching a PMT (“first hit time”) 
therefore naturally offers information on the event directionality.

• If particles travel at a speed faster than the speed of light in LS, 
scintillation light forms a cone-like front structure.
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Methodology: physics process

• A particle’s track depicts distict shape of nPE(𝑡)
for PMTs at different angles.

• Practically, the shape of nPE(𝑡) depends on:

• The angle between the track and PMT;

• Track starting and stopping points;

• d𝐸/d𝑥 etc.
• Therefore, the particle’s information is reflected 

in nPE(𝑡), and finally reflected in the waveform.

11

Direction

PID
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• It is too complex to use full waveform as inputs to ML. So, features are 
extracted from waveforms to keep only the useful information relevant 
to reconstructions. 

12

Methodology: PMT features

Directionality

Energy

PID

Track

Vertex

Pictures Features

Machine learning 
models 

PMT Waveform

Reconstruction
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Methodology: PMT features
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First Hit Time 

Total charge: The total number 
of PEs before electronic effects.

Charge ratio: Charges in the first 
4ns divided by the total.

Slope: Describes the average 
slope in the first 4ns.

Max charge, Peak Time

Extracte feature
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Direction

Energy

Flavor

Track

Vertex

Introduction to models
3 categories of machine learning method to deal with a spherical problem:
• Planar-image-based method: EfficientNetV2
• Spherical-image-based method: DeepSphere
• 3D-based method: PointNet++
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Introduction to models: EfficientNetV2
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• State-of-the-art performance among CNNs;
• Smaller model size and fast training;

Model input: 2D grids
• The PMT map is projected onto a 2D θ−ϕ

grid (according to PMT spherical 
coordinates);

• The grid size of 128 × 224 for Large PMTs 
is chosen to ensure each grid cell 
corresponds to at most one PMT.

Total charge First hit time
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Introduction to models: DeepSphere
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• DeepSphere: a popular tool processing spherical data 
originally developed for cosmology studies.
• Maintain rotation covariance;
• Avoid distortions caused by projection to a planar 

surface. 

• Nside = 32
• Pixels=12×Nside

! = 12288
• If more than one PMTs are grouped into 

one pixel, information is merged:
• First hit time: the earliest;
• Totoal charge: the sum;
• Slope and others: the average.

14 Aug. 2023

4 sets of convolution blocks, followed by one Chebyshev 
convolution layer, a fully connected layer and lastly a 
prediction block. 



Introduction to models: PointNet++
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Directly taking 3D point clouds as input → JUNO signal more resembles point clouds.

(N.B. PointNet++ input format: for each event, N(PMT)*[x, y, z, features, ..]  )
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Loss function
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• Predict theta directly: The result is obviously biased, and the model 
seems to prefer value closer to 90°. This is because the distribution of 
theta is not uniform, and more events are distributed around 90°.

14 Aug. 2023



Loss function
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Bias is gone

Unit directional vector

• Then try to reconstruct the directional vector 
(𝑥, 𝑦, 𝑧) and update Loss Function (Rotation 
invariance):

Loss = (𝑥 − 𝑥#)$+(𝑦 − 𝑦#)$+(𝑧 − 𝑧#)$
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𝛼: Angle between the true and reconstructed directional vector. 
Due to the range of 𝛼 is 0 to 180°, 68% quantile is used to quantify 
the performance of 𝛼.
𝜃: Zenith angle of the true vector. Reconstructed 𝜃 - True 𝜃 reflect the 
resolution. Distribution in different 𝐸" bins can be well in line with the 
Gaussian distribution. 𝜎#  is used as quantized resolution.

Directionality reconstrction performance
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Directionality reconstrction performance: 𝛎𝛍-CC
EfficientNetV2 DeepSphere PointNet++
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Resolution gets better as energy increase.

Directionality reconstrction performance: 𝛎𝛍-CC
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Directionality reconstrction performance: 𝛎𝒆-CC
EfficientNetV2 DeepSphere PointNet++
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Resolution gets better as energy increase.

Directionality reconstrction performance: 𝛎𝒆-CC
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• Both lepton and hadron informations are used in the directionality reconstruction.
• Low-threshold in LS detectors allows for more information from hadrons.

• The reconstructed neutrino direction is less smeared from true neutrino direction 
compared with the charged lepton direction. 
• An advantage for an LS detector with this method.

Directionality reconstrction performance

14 Aug. 2023

9

(a) ⌫µ/⌫̄µ-CC ✓⌫ (b) ⌫e/⌫̄e-CC ✓⌫

Figure 10. The ↵ (top) and ✓⌫ (bottom) resolutions are shown as a function of neutrino energy E⌫ for (a) ⌫µ/⌫̄µ-CC (left)
and (b) ⌫e/⌫̄e-CC (right) events in the three models. The resolution improves with increasing E⌫ . The ⌫µ/⌫̄µ-CC events in
general have better resolution than the ⌫e/⌫̄e-CC events at the same energy.

Figure 11. Comparison between two included angles: the one between the true and reconstructed direction from PointNet++
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using
the same (a) ⌫µ-CC and (b) ⌫e-CC samples.



28

Directionality reconstrction performance: Validation

The result of GENIE and NuWro are consistent.

To check models’ robustness and estimate systematic uncertainties, a 
different generator, NuWro, is used for validation:
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Energy reconstrction performance: 𝛎𝛍-CC
Neutrino interaction → Secondary particles → Deposition energy → Visible energy.
Two strategies on energy reconstruct: visable energy and neutrino energy.  

Reconstruct the neutrino energy  (For fully-contained events only).

resolution at 17% - 1%

Reconstruct the visible energy (after quenching in the LS).

resolution at 5% - 1%
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Summary
1. In this talk, we present a multi-purpose machine learning approach for 

the reconstruction and identification of high energy events in large 
homogeneous LS detectors.

2. We demonstrated the feasibility of atmospheric neutrinos’ 
directionality reconstruction for the first time in an LS detector using 
this approach.

3. We also show that the results of directionality reconstruction obtained 
using different machine learning models and neutrino event 
generators are consistent.
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