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» Large Hadron Collider (LHC) :

e A circular proton collider with a circumference of 27 kilometers, located

+ 4 Experiments : CMS, ATLAS, LHCb, ALICE

e (Centre of mass energy:
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about 100 meters below the French-Swiss border.

First Run (Runl) : 7-8 TeV

Second Run (Run2) : 13TeV LHC and 4 experiments

Third Run (Run3) : 13.6 TeV
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> Pileup: Additional proton proton collisions at the LHC

e The average number of pileup during the Run3 was
above 50 (CMS)

e Average pileup on future high-lumi LHC will be 140

> Will severely degrade quality of observables (jet
multiplicity, jet substructure) if not properly treated

> PU mitigation is crucial at hadron colliders

e For charged particles, use tracking information to
disentangle particles from PU

e Very challenging for neutral particles
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> Pileup Per Particle Identification (PUPPI)
> PUPPI is Rule-Based algorithm

e Calculates a weight w € [0, 1] for each particle 1in the event

— Encodes the probability for a particle to be leading vertex (LV) or not

— Weight used to reweight the particle 4-momentum before jet clustering

e For charged: use tracking information and assign @ or 1

e For neutrals: build a variable

a; = log Z (PTJ )2 {Im| < 2.5 jare all charged particles from LV

j£i ARG<Ry AR;j Ini| > 2.5 jare all kinds of particles

e QCD 1s harder and more collimated than PU, so that a 1s much higher

e After some math and assumptions translate a into weight
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> Published literature demonstrates that ML can improve over current algorithm [1,2,3]
> In particular, GNNs proved to be very effective

e Collect 1nfo about neighbouring particles 1in a much more expressive way

> General strategy in these works: train from a supervised model using Delphes fast-
simulation truth labels

e A flag set to 1 for charged particles from the LV, -1 for charged pileup and
@ for all neutral particles. This flag provides a simple encoding for weight

GGNN (100)
GGNN (100)
GGNN (100)



https://arxiv.org/abs/1707.08600
https://arxiv.org/abs/1810.07988
https://arxiv.org/abs/2107.02779
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> Critical issue: per-particle labels are not

available in Geant4-based full simulations y & Py
% ® PU

e Marking the source of each particle
1S not supported

® Previous approaches can’t be ported "’f,'
to experiments such as ATLAS and ot S
CMS .

> Therefore, an algorithm that does not [Pkl 517
depend on the true labeling of each
particle is needed _ o - "

Not available in full-sim!

e That's the question this study will
solve
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> At first, we simulate identical proton-proton collisions in two scenarios:
e Only the hard interaction is simulated: no-PU sample (X ;)

e Pileup 1s superimposed to the hard interaction: PU sample (X))

> Train network to learn differences between the two samples

¢ ¢

e Network choice: Attention-Based Cloud Network (ABCNet)




s )

.I:

;‘ S -".'{:?"/
,'_"__':". .-t'_. ) ”

TOTAL algorithm Haans ks

Institute of High Energy Physics
Chinese Academy of Sciences

> Used optimal transport, OT to design loss function

e Optimal transport (OT) can measure the “distance” between
probability distributions

> Network output: per-particle weights w

e Used to mitigate PU (PU particles are close to 0, LV
particles are close to 1)

> During training, weight PU sample (Xp;;) by the weights w
> Tweak weights to minimize the distance between X ., and w-Xp;

> No need for per-particle labels in this setup

[HEP ML team C.Wang(IHEP CAS) 13/08/2023 10
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> Sliced Wasserstein Distance (SWD)

e A "distance" measure for multidimensional variable
distributions based on optimal transportation

e No guarantee that energy 1s conserved between the two
> Add an event-level MET constraint term to the loss

e Enforce energies 1n no-PU and PU events to be similar

z Final loss function:

. OT - SWD(w . Xpu, Xno—PU) + A X MSE (MET(w . Xpu), MET(xno_pu))

> Call this Training Optimal Transport with Attention Learning: TOTAL
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> Compare TOTAL with PUPPI and
no-PU scenario

> Reweight each particle’s 4-
momentum by the network weight

> Cluster TOTAL jets and TOTAL
MET

> Define the resolution as:

5 — a75% — d25%
® 2

e where g 1s the X-th quantile
of the considered response
distribution
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» The improvement in Jet energy response is about 23% relative to PUPPI
and 22% for missing transverse momentum
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> Improvement of Jet energy resolution relative to PUPPI: 20 ~30%
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> The model in this study was trained based on 140 primary vertices, but
it still works for 200 vertices with little change
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> Study impact of TOTAL on LHC searches:
e Search for BSM VBF H(inv.)

N
o

> Signal signature: pair of forward jets and
MET

N
o

” Main background: strongly produced Z(vv)
+ Jets

> Perform toy analysis by training a linear SVM trained with m; and p{"'*®

classifier (SVM) using dijet mass and MET

> Observe the change in significance (S/
\/E) with signal efficiency:

e TOTAL 1s about a 15% improvement

True positive rate

— PUPPI
— TOTAL
—— TOTAL + A

% improvement in S/VB
o
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We presented novel algorithm to reject PU particles at high-intensity
hadron colliders

e Trained and tested on Delphes simulation of PhaseZ CMS detector
We are Training Optimal Transport with Attention Learning: TOTAL

We solved the longstanding problem of neutral labels in PU mitigation
We do not rely on explicit, per-particle labelling

Such an algorithm will be crucial at the High-Luminosity LHC, where
much harsher data-taking conditions are expected

Our approach can be generalized to a wide range of denoising problems

[HEP ML team C.Wang(IHEP CAS) 13/08/2023 19
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> ABCNet is an graph neural network
enhanced with attention mechanisms

Encoding

e Treat particle collision data as
a set of permutation-invariant

Self-coeff x;’

objects "o
, @
e Attention mechanisms filter out y <:> ;

the particles that are not
relevant for the learning process

Encoding

e Implemented 1nside custom graph
attention pooling layers

(GAPLayers)
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o Add together self- (x/) and local- (y;;) coefficients
and apply non-linearity

cj = LeakyRelu(x; + y;;)

o Align coefficients c;; by applying SoftMax

()
Y 2 kexp(cik)
Attention o Get attention coefficients by multiplying y,-’j by c,fj

X = Relu (Z c,'Jy,j)
J
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> The optimal transport problem has a closed form for 1D problems:

Welbx,pv) = [ ¢ (P, Py(r) dr

e where pX , pY are 1D PDFs, PX~!(1), PY~! (1) are the respective
CDFs and c(-, -) 1s the transportation cost function

e No guarantee that the integral 1s solvable

e The 1ntegral can always be approximated by the finite sum

1 & C2m—1

2> ¢ (Px M) Py (mm)) =

m=1
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Px Py

o me{1,2,3,4,5} = 7, =221 ¢€{0.1,0.3,0.5,0.7,0.9}
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o Each particle is a sample from a n-D

feature space o Now can solve the 1D OT

o SWD: take n-D feature space and problem for each slice
project (slice) it to 1D o Sort particles by slice

o Project on a vector belonging to $"~1 o The average on all slices and

o For robustness, take multiple random particles becomes the loss function
slices

Sorted 'Rgmpl in R

Linear Task-Specific
Projection Sliced Wasserstein Discrepancy

Sorted Ry, p2 in R
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o 9 input features:

° (pr.m ¢, E)
@ Charge

@ PDGID
@ dXY & dZ impact parameters

@ Vertex association (for charged)

o Loss: SWD(X, - &, Xpp) + MET
constraint

o Cost function: squared distance
o Sliced features: (pr, 1, ¢, E)
o Qutput: per-particle weight @

o Train on 300k events, equally split between QCD multijet, tt dileptonic and
VBF Higgs(4v) processes

o Consider 9000 particles per event (zero-padding included)
o Gather the 20 k-nearest neighbors for each particle when building graph

Post-aggregation layers




