

传感器芯片设计与测试 Sensor chip design and testing

Ying Zhang

On behalf of the CEPC MOST2 Vertex detector design team

2023-6-19

CEPC

Main specifications of the full-scale chip

- A full-scale pixel chip should be design to build the first vertex detector prototype
 - No full-scale CMOS pixel sensor for particle detector exists in China before this project

Project assessment index (考核指标)

- Spatial resolution: 3-5 µm
- > Total ionization dose (TID) > 1 Mrad

指标名称	立时有标状	中期指标值 /状态 ³	完成指 析 析 依 、 代	考核方式(方 法)及评价手 段 ⁴
硅径迹探 测器原型 机的空间 分辨率	无	研制出小型 传感器芯 片,像素单 元尺寸小于 或等于 25 微米 ×25 微米。	3-5 微米	同审通验析空率结型测以家子、、实分得辨试原与,也以不会,我们,我们,我们,这写没,我们,这,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,你,
所设计的 抗辐照硅 传感器能 承受的总 剂量	无	完成传感器 的初步设 计,通过仿 真初步验证 其抗辐照性 能	1 MRad	同行专家评 审(提供传 感器的设计 与测试报告 供专家评审)

Additional specifications on the full-scale chip

Additional specifications considered besides the main goals of project

- > Assembled on ladder → large sensitivity area
- Low material → low power density
- > High detection efficiency \rightarrow small dead time
- > Bunch spacing: Higgs: 680 ns; W: 210 ns; Z: 25 ns

Hit density: 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for $Z \rightarrow high hit rate$

Specs	Parameter
Hit rate	120 MHz/chip
Data rate	3.84 Gbps (triggerless) ~110 Mbps (trigger)
Dead time	< 500 ns
Pixel array	512 row × 1024 col
Chip size	~1.4 × 2.56 cm ²
Power Density	< 200 mW/cm² (air cooling)

TaichuPix design goals

SpecsParameterSpatial resolution $\leq 5 \ \mu m$ Integration time $\leq 100 \ \mu s$ Power Density< 100 mW/cm²

JadePix design goals

	-	
Chip size		no requirement

Major innovation of TaichuPix: High data-rate processing maintaining good spatial resolution

Structure and process of sensor

Technology: CMOS Monolithic pixel sensor

- > N-well/P-epitaxial diodes employed collection elements
- > Readout electronics integrated on the same Si-substrate
- → Low material budget, low pixel capacitor, easy to assemble

Process : TowerJazz CIS 180 nm process

- Process splits:
 - Standard process
 - Baseline option, the only choice available in the MPW submissions
 - Modified process*
 - Adding an extra low dose n-type layer based on the standard process, to achieve faster charge collection, thus a better radiation tolerance
 - Very difficult to access, the first time available to a Chinese institute

Standard process

Modified process*

*Reference: NIM, A 871 (2017) 90–96

TaichuPix sensor architecture

Pixel 25 μm × 25 μm

- > Continuously active front-end, in-pixel discrimination
- > Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- > Priority based data-driven readout
- Time stamp added at end of column (EOC)
- > Readout time: 50 ns for each pixel

2-level FIFO scheme

> L1 FIFO: de-randomize the injecting charge

Invented a new buffer tree architecture, patented

专利: CN: 2021.11130545.6

L2 FIFO: match the in/out data rate between core and interface

Proposed a readout scheme for mitigating data congestion 专利: CN202210631994.1, 2022-06-07

Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

> On-chip bias generation, LDO, slow control, etc.

TaichuPix prototypes overview

Major challenges for the sensor design

- > Small pixel size \rightarrow high resolution (3-5 μ m)
- > High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole
- Radiation tolerance (per year): 1 Mrad TID

Completed 3 rounds of sensor prototyping in 180 nm CMOS process

- > Two MPW chips (5 mm \times 5 mm)
 - TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification
- > 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023
 - Difficulties encountered in submission: no domestic access, complex and long time procedure from abroad access, very expensive ...

Functionality of complete signal chain

Functionality of the complete signal chain (including sensor, analog front-end, in-pixel logic readout, matrix periphery readout and data transmission unit) was firstly proved with X-ray, electron and laser sources.

Measured results consistent with simulations in term of shape, amplitude

Pixel analog signals from simulation (left) and measurement (right)

TaichuPix-2 test with ⁹⁰Sr

Four pixel sectors with different analog front-end variations for design optimization, S1 used in the full-scale chip due to the lowest ENC

Sectors Front-end design features

S1	Reference design, inherited from TaichuPix-1
S2	PMOS in independent N-wells
S3	One transistor in an enclosed layout
S4	Increased transistor size to reduce the threshold dispersion

Threshold Threshol Temporal Sec-Total equiv. noise (e⁻) tors Mean (e⁻) d rms (e⁻) noise (e⁻) **S1** 267.0 49.8 29.3 57.8 S2 293.4 26.9 60.8 54.5 S3 384.9 58.4 24.4 63.3 S4 411.9 56.6 26.5 62.5

TC2 exposure to ⁹⁰Sr source

- Average cluster size decreases with threshold as expected
- Average cluster size for S1-S4 larger than 1,
 - → benefits the spatial resolution (better than the binary resolution, $25/\sqrt{12} \approx 7.2 \,\mu m$

Threshold and noise of different pixel sectors

Laser test of TaichuPix-2

 Setup: a 3-D linear translation stage with a 1064 nm laser

Method:

- One dimension laser scan on the test chip with a fixed step of 1 µm
- Take the linear fit of the observed X,Y position as the expected laser position

Measured results

	Resolution	Overall error	Statistical error	Translation error
	(µm)	(µm)	(µm)	(µm)
Χ	3.98	±0.23	±0.05	±0.22
Y	4.12	±0.25	±0.05	±0.25

Distribution of residual Y

0

-10

10

20

-20

-30

50

19 June 2023, Sensor chip design and testing

30 40 Residual Y (µm)

Large-scale sensor TaichuPix-3

- 12 TaichuPix-3 wafers produced from two rounds
 - > Wafers thinned down to 150 µm and diced

8-inch wafer

Wafer after thinning and dicing

Thickness after thinning

> Wafers tested on probe-station \rightarrow chip selecting & yield evaluation

Probe card for wafer test

An example of wafer test result

Threshold and noise of TaichuPix-3

- Pixel threshold and noise were measured with selected pixels
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻
 @ nominal bias setting

TID test setup

TC2 at BSRF 1W2B beamline

TC3 at BSRF 1W2B beamline

Source	Wiggler
Energy Range	5-18 keV
Resolution (ΔE/E)	Over 4 x 10 ⁻⁴
Flux (photons/sec)	10 ¹²
Beam Size (HxV)	1mm x 0.6 mm

Attenuation of Aluminum (thickness of Al foil is 0.01 mm/layer)

Aluminum (Al)	Irradiation dose rate
96 layers	0.02rad/s
64 layers	3 rad/s
32 layers	394 rad/s
28 layers	722 rad/s
24 layers	1321.6 rad/s
1 layers	42927 rad/s

- Ionization chamber is used to calibrate irradiation dose rate
- The irradiation dose is regulated by AI foil
- Chip was exposed with full working condition: power, bias, clk, ...

TID test result

Test of TC2

Normal chip functionality and good \succ noise performance proved up to 30 Mrad TID

TC2 Pixel threshold vs. TID pixel threshold 0.4 * pixel (7,120) pixel (40,120) Voltage M 0.1 0 0.5 1.5 2.5 0 3 3.5 ×10⁴ TC2 Pixel noise vs. TID [krad] 0.1 - pixel (7,120) pixel (40,120) Noltage 0.04 0.02 1.5 2 2.5 0.5 3.5 TID $\times 10^4$ [krad] 30 Mrad 10 Mrad

Test of TC3

All three irradiation regions indicated a \geq good performance to 3 Mrad TID

TaichuPix-3 telescope

The 6-layer of TaichuPix-3 telescope built

> Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board

6-layer TaichuPix-3 telescope

Setup in the DESY testbeam

- > TaichuPix-3 telescope in the middle
- > Beam energy: 4 GeV mainly used
- Tests performed for different DUT (Detector Under Test)

260

295

218

197

TaichuPix-3 beam test result

- 2 DUT with different processes tested
 - DUT_{B} with the standard process; DUT_{A} with the modified process

Spatial resolution results

Spatial resolution at DUT [μm]

6.5

6

5.5

4.5

4

3.5

175

4 GeV e

DUT_B

- The resolution gets better when decrease the pixel \succ threshold, due to the increased cluster size
- A resolution $< 5 \,\mu m$ achieved for both processes, \geq best resolution is 4.78 µm

Events

Ladder readout design

- Detector module (ladder) = 10 sensors + readout board + support structure + control board
 - > Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support
 - > Signal, clock, control, power, ground will be handled by control board through flexible PCB

Challenges

- > Long flex cable \rightarrow hard to assemble & some issue with power distribution and delay
- > Limited space for power and ground placement \rightarrow bad isolation between signals

Solutions

Read out from both ends, readout system composes of three parts, careful design on power placement and low noise

Ladder readout design

Functional block diagram of a ladder readout unit

Design key points of the flexible board

- > Carefully chosen stack-up, minimum the thickness
- Appropriately sacrifice the slow signals to guarantee the shielding of the major signals and the low impedance path for analog power supply.
- > Very challenging in manufacture because of the extremely long & thin PCB routing
- Design key points of the interposer board
 - > Ultralow noise power supply to chips, RMS noise ~1 µV
 - Low noise DAC reference: 16 bits, 1 LSB INL
 - > Independent power supply and data path for back-to-back ladders

Laser test result of ladder CEPC Fundamental readout unit Fundamental readout unit

U5

U4

U3

U2

U1 .

> Each contains 5 TaichuPix chips, a interposer board, a FPGA readout board

Functionality of a full ladder fundamental readout unit was verified

- > Configuring 5 chips in the same unit
- Scanning a laser spot on the different chips with a step of 50 µm, clear and correct letter imaging observed
- ➤ Demonstrating 5 chips working together → one ladder readout unit working

Laser tests on 5 Taichupix chip on a full ladder ("CEPCV" pattern by scanning laser on different chips on ladder)

FPGA

Summary

- The full-scale and high granularity pixel prototype, TaichuPix-3, has been designed and tested
- The project design indicators were achieved

	Project indicators	Test results
Spatial resolution	3-5 μm	3.98/4.12 µm for X/Y dir. (laser test)
		4.78/4.85 µm for X/Y dir. (beam test)
TID	> 1 Mrad	> 3 Mrad

- Readout electronics for the sensor test and the ladder readout were developed
 - > Performed the sensor characterization in the lab successfully
 - Completed beam tests for the pixel sensor prototype and the vertex detector mechanical prototype

Backup

Patent (专利)

- 1. 魏晓敏, 张浩楠, 王佳, 薛菲菲, 郑然, 胡永才. 一种树状组织的缓存结构及其应用. CN: 2021.11130545.6, 2021-11-5
- 魏晓敏, 张浩楠, 王佳, 郑然, 薛菲菲, 蔡耀, 胡永才. 一种粒子图像的数据压缩 电路和数据压缩方法, CN202210632037.0, 2022-06-07
- 3. 王佳,杨聚鑫,郑然,魏晓敏,薛菲菲,胡永才.一种小面积快速瞬态响应全片上 集成LDO电路, CN202111161887.9,2021-9-30
- 郑然,李志军,王佳,魏晓敏,薛菲菲,胡永才.一种静态功耗自动配置的低功耗 前端读出电路及设计方法, CN202111087544.2,2021-9-16
- 5. 薛菲菲,黄雪蕾,郑晓亮,魏晓敏,王佳,郑然,胡永才.一种电荷型逐次逼近 ADC结构, CN202111089036.8,2021-9-16

Pixel analog front-end

Based on ALPIDE* front-end scheme

- > modified for faster response
- 'FASTOR' signal delivered to the EOC (end of column) when a pixel fired, timestamps of hit recorded at pos. edge of 'FASTOR'

Schematic of pixel front-end

*Ref: D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042

Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp of a step of 25 ns.

Pixel architecture – parallel digital schemes

- Simplified column-drain readout:
 - \backsim Each double column shares a common Fast-Or bus for hit indication
 - Some time stamp register @40MHz will record the hit arrival time
 - ✤ Hit pixels in the same cluster will share a common time stamp as the Trigger ID
- Two parallel digital readout architectures were designed:
 - ♥ Scheme 1: ALPIDE-like: benefit from the proved digital readout in small pixel size
 - Readout speed was enhanced for 40MHz BX
 - Scheme 2: FE-I3-like: benefit m the proved fast readout @40MHz BX (ATLAS)
 - > Fully customized layout of digital cells and address decoder for smaller area

Readout & Periphery

Designed for low power

- Only the hit (fastor) info & address are fannout from the pixel array
- Solution Only the read (acquisition) signal is fanned in to the pixel array
 - Clock & time stamp are localized only in the EOC, different from FE-I3

Optimized @ CEPC hit rate

- \backsim Common time stamp recorded for a full double column
 - For low power
 - Column is hit every 8.3us / pixel is readout in 2 clocks (50ns) / cluster size 3 pixels
 - Dead time 500ns 98% trigger efficiency

- Time stamp recorded when Fastor is valid
- Each pixel readout by 2 clocks (50ns)
 - Sequence Sequence
 - Sim by 512 rows (full size)
 - > TDA: read sent –addr come
 - ♦ Address latch @ 37.5ns
 - ▶ @1.5 clock
 - Enough headroom for all corners

Readout & Periphery on 2 level FIFOs

* When 8b10b encoading is enable, valid data bandwidth is 70MHz due to some filling code.

	31	30	23	22	14	13	4	3	0
DOUT (no 8b10b)	Data available	Timestamp		Addr_Dcol		Addr_ row		Pattern	
	1 bit	8bit		9bit		10bit		4bit	

FIFO1 group for 32 DCols

- > Limited by the 25um pitch
- Depth ≈ 9 *22bits (8+10+4)
- Row-level priority readout to group interface

FIFO2 for 4 FIFO1-Group

- Round-robin in 4 groups by data mux
- > DualPort SRAM for each FIFO2
- Depth 256 * 32bits
- Serializer interface with PLL & CML/LVDS
 - Trigger mode @160Mbps LVDS max
 - Triggerless mode @ 4Gbps
 CML max

FIFO Tree for 32Dcol

- Motivation:
 - Share the storage volume
 - Reduce the area and optimize clock tree

FIFO volumn: 288

- ≻ L1-L5: 4
- ≻ L6: 32

Router:

Timestamp priority

Trigger & triggerless readout

- A window can be set to cover the trigger uncertainty
 - > Time walk, jitter, ...
 - > By default a \pm 3LSB(= \pm 75ns) window is set (=7LSBs),
 - Pixel analog's speed is set with the window correspondingly (for low power or high time resolution)

	31	30	23	22	14	13	4	3	0
DOUT no 8b10b)	Data available	Timestamp		Addr_Dcol		Addr_ row		Pattern	
	1 bit	8b it		9bit		10bit		4bit	

DOUT	31		12	11		0
(with 8b10b,		Encoding of DOUT[31:16]			1010_1010_1010	
hist part)		20 b it			12bit	
DOUT2	31		12	11		0
(with 8b10b, second part)		Encoding of DOU T[15:0]			1010_1010_1010	
		20b it			12bit	

- CEP
- 8 bit time stamp can cover a range of 6.4us @ 40MHz
- Designed for trigger readout by default
 - Considering the non-overlapped time stamps, estimated trigger latency is ~3us maximum
 - Trigger ID calc. by the trigger's time stamp – latency
 - > Only matched event be readout

All the raw data can also be readout in triggerless mode

- > 8b10b encoder added for balanced bitstream at Gbps
 - Limited by the 32bit serializer, a 32-bit data is encoded in two words
 - Discussion in the following part
 - Each with 20bit encoded info and 12bit dummy
 - When data is invalid, k28.5 code will be sent for data alignment

- High speed clock is generated by the on-chip PLL
- Serializer is based on balanced 2: 1 Mux architecture
 - ➤ ✓ : Benefit for the speed at high clock frequency
 - X: Length of the Ser cannot be configured
- By default, 160Mbps data rate (plain code w/o 8b10b) will be set
 - > MSB D<31> will be used for data synchronization, independently output

► CML (Gbps) / LVDS (≤160Mbps, in engineering run) optional for optimized power 19 June 2023, Sensor chip design and testing

Bias generation

- Structure of the DAC
 - Voltage DAC (VDAC)
 - Current DAC (CDAC)
 - Bandgap(BGR)
 - MUX 7 to 1
 - > Current bias reference generation

Characteristics

- > Voltage DAC (VDAC)
 - 10 bit
 - LSB:1.56 mV
 - Range:0~1.6 V
- Current DAC (CDAC)
 - 8 bit
 - LSB:40 nA for common, 0.1nA for ITHR
 - Range:0 nA~10.2 μA

- All the configuration bits can be loaded by the common SPI interface controlled in the Periphery block
 - > Chip global operation mode
 - DAC bias tuning
 - PLL status
 - > Pixel matrix CalEn/Mask bits
- Standard SPI protocol designed, 8 bits loading each time

Pixel matrix slow control by two steps

- > Write one row by SPI, 8 cols each time
- > Generate a shift clock by SPI, 1clk each time
- Send a load pulse, depending on CalEn/Mask configuration
- Problem left to be solved: matrix configuration speed should be speed up by backend electronics

19 June 2023, Sensor chip design and testing

Readout system of TaichuPix chips

Readout system for single-chip includes

- > A dedicated test board for chip wire-bonding and power link
- A readout board loaded with a FPGA to perform chip configuration and data readout
- A DC power supply
- > A PC

Structure of the readout system

Electrical test

 Electrical performance verified by injecting external voltage pulses into pixel front-end

Performance of threshold and noise of TaichuPix2

- Pixel array includes 4 sectors with different transistor parameters/layout for analog front-end, S1 chosen for the full-scale design.
- Threshold can be tuned by changing 'ITHR' (a global current bias)

Chip4	Threshold Mean (e ⁻)	Threshold rms (e⁻)	Temporal noise (e ⁻)	Total equivalent noise (e⁻)
S1	267.0	49.8	29.3	57.8
S2	293.4	54.5	26.9	60.8
S3	384.9	58.4	24.4	63.3
S4	411.9	56.6	26.5	62.5

TID test on TaichuPix-2

TaichuPix-2 irradiated at BSRF 1W2B beamline (6 keV X-ray)

- Chip was exposed with full working condition: power, bias, clk, ...
- Dose rate ~17.63 krad/min for the first 2.5 Mrad, then 211.56 krad/min for 51 min, then 1.24 Mrad/min for 15 min
- Normal chip functionality and good noise performance proved up to 30 Mrad TID

TID test on TaichuPix-3

Beamline Specs

Source	Wiggler
Energy Range	5-18 keV
Resolution (ΔE/E)	Over 4 x 10 ⁻⁴
Flux (photons/sec)	10 ¹²
Beam Size (HxV)	1mm x 0.6 mm

Beamline Specifications

Aluminum (Al)	Irradiation dose rate
96 layers	0.02rad/s
64 layers	3 rad/s
32 layers	394 rad/s
28 layers	722 rad/s
24 layers	1321.6 rad/s
1 layers	42927 rad/s

Attenuation of Aluminum (thickness of Al foil is 0.01 mm/layer)

Analog signal of the pixel monitored by the oscilloscope

- The energy of X-ray is set to 12 KeV
- Ionization chamber is used to calibrate irradiation dose rate
- The irradiation dose is regulated by aluminum foil

workin clk, ...

Position3

Position1

TID test on TaichuPix-3

Position2

TaichuPix-3 irradiated at BSRF
1W2B beamline (12 keV X-ray)posit
→ 1

- Chip was exposed with full working condition: power, bias, clk, ...
 - Dose rate ~1.2 rad/min for the first 12 min, in order to find the position of beam spot.

→ The size of beam spot agrees with the expectation of 1 mm \times 0.6 mm

0.48

0.30

0.28

0.018

0.016

0

0.5

0.5

Full image of the X-ray beam spot(position 1)

Dose rate ~43.3 krad/min for 69 min until total dose over 3 Mrad.

All three irradiation regions indicated a good performance to 3 Mrad TID

Pixel noise vs. TID

Position2,ITHR = 96

Position3,ITHR = 96

2

1.5

Irradiation[Mrad]

1.5

Irradiation[Mrad]

2.5

Pixel threshold vs. TID

Preliminary

2.5

Overview of the full-scale prototype

Pixel cell copied exactly from MPW + scaled logic with new layout
 Periphery + debugged/improved blocks + enhanced power network

Yield of TaichuPix-3

12 TaichuPix-3 wafers produced from two rounds

> Wafer #1-6 from modified process, 7-12 from standard process

Wafer num.	Yield	Wafer num.	Yield
1	0.65	4	0.475
2	0.725	5	0.625
3		6	0.525
7	0.775	10	0.675
8	0.725	11	0.6
9	0.275	12	0.35
1 st round		2 nd rou	und

Ladder readout design

- Flex: for chip bonding and providing power & control bus
 - > Minimize material budget: limited height of flex, minimum set of signals
 - Robust power supply
 - > Challenging in manufacture due to long and thin flex

Interposer board

- Provide power supply
- > DAC, reference, linear regulator
- Data link to FPGA 5 cm

FPGA board

- Communication with chips
- Data processing and package data
- Readout to PC via 1Gbps Ethernet
- Capability of 6 Gbps readout and 2GB internal DDR memory

Design of the flex board

	12.5	um	Coverlay	(yellow)		<u> </u>			
	20	um	Coverlay Adhesive			Soldmask	(green)		
Layer 1	24	um	ED Base Copper	12	um	um +	Plated	18	um
	13	um	Polyimide (Adhesivele	ss)					
	12.5	um	Adhesive						
Layer 2	12	um	ED Base Copper	12	um				
	25	um	Polyimide (Adhesivele	ess)					
Layer 3	12	um	ED Base Copper	12	um				
	12.5	um	Adhesive						
	13	um	Polyimide (Adhesivele	ess)					
Layer 4	24	um	ED Base Copper	12	um	um +	Plated	18	um
	20	um	Coverlay Adhesive						
	12.5	um	Coverlay	(yellow)					
FPC厚度:	213	um	Spec:	210	um	+/-	50	um	
		1							

Ladder stack-up

553mm X 17.23mm	

Production of flex boards

- Flexible board from FASTPRINT company
 - Thickness: 0.162 mm (2-layer); 0.273 mm (4-layer);

Flexible board from Zsipak company

> Thickness: 0.161 mm for 2-layer; 0.213 mm for 4-layer

TaichuPix-3 specification & performance

	Design specs.	Measured
Spatial resolution*	3~5 µm	4.78 µm (best)
TID*	> 1 Mrad	> 3 Mrad
Pixel pitch	≤ 25 µm	25 µm
Chip size	~1.4 × 2.56 cm ²	1.59 × 2.57 cm ²
Dead time	< 500 ns	~ 300 ns
Data rate	110 Mbps (trigger) 3.84 Gbps (triggerless)	Not tested (trigger) Currently 160 Mbps tested (triggerless)
Power density	< 200 mW/cm ²	89 – 164 mW/cm ² @40 MHZ
*project indicator		

Laser test result of ladder flex

Functionality of flex readout was first verified by two chips bonded

- > Chips U10 & U9 can work independently
- > Two can work simultaneously, NO error code/cross-talk found

TC3 beam test results

Detection efficiency vs. threshold (4 GeV)

> The efficiency decreasing with increasing threshold

$$\epsilon = \frac{N_{|x_{meas}, y_{meas} - x_{pre}, y_{pre}| < d}}{N_{tel}^{Tracks}}$$

• Efficiency is the ratio of tracks that match the hit on the DUT within a distance d around the predicted hit from the telescope to all tracks of the telescope

Design of DAQ

Considering 6 double-sided ladders

