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◼ A full-scale pixel chip should be design to 

build the first vertex detector prototype

➢ No full-scale CMOS pixel sensor for particle 

detector exists in China before this project

◼ Project assessment index (考核指标)

➢ Spatial resolution: 3-5 μm

➢ Total ionization dose (TID) > 1 Mrad
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Main specifications of the full-scale chip

19 June 2023, Sensor chip design and testing



◼ Additional specifications considered besides the main goals of project

➢ Assembled on ladder → large sensitivity area

➢ Low material → low power density

➢ High detection efficiency → small dead time

➢ Bunch spacing: Higgs: 680 ns; W: 210 ns; Z: 25 ns

Hit density: 2.5 hits/bunch/cm2 for Higgs/W; 0.2 hits/bunch/cm2 for Z → high hit rate

Major innovation of TaichuPix: High data-rate processing maintaining good spatial resolution
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Additional specifications on the full-scale chip

Specs Parameter

Hit rate 120 MHz/chip

Data rate 3.84 Gbps (triggerless)

~110 Mbps (trigger)

Dead time < 500 ns

Pixel array 512 row ×1024 col

Chip size ~1.4 ×2.56 cm2

Power 

Density

< 200 mW/cm2

(air cooling)
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Specs Parameter

Spatial resolution ≤ 5 μm

Integration time ≤ 100 μs

Power Density < 100 mW/cm2

Chip size no requirement

TaichuPix design goals JadePix design goals



◼ Technology：CMOS Monolithic pixel sensor    

➢ N-well/P-epitaxial diodes employed collection elements 

➢ Readout electronics integrated on the same Si-substrate

➔ Low material budget, low pixel capacitor, easy to assemble

419 June 2023, Sensor chip design and testing

Structure and process of sensor

*Reference: NIM, A 871 (2017) 90–96

◼ Process : TowerJazz CIS 180 nm process

➢ Process splits:

⚫ Standard process

❑ Baseline option, the only choice available in the 

MPW submissions 

⚫ Modified process*

❑ Adding an extra low dose n-type layer based on 

the standard process, to achieve faster charge 

collection, thus a better radiation tolerance

❑ Very difficult to access, the first time available 

to a Chinese institute  

Standard process

Modified process*
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TaichuPix sensor architecture
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◼ Pixel 25 μm × 25 μm

➢ Continuously active front-end, in-pixel discrimination

➢ Fast-readout digital, with masking & testing config. logic

◼ Column-drain readout for pixel matrix

➢ Priority based data-driven readout

➢ Time stamp added at end of column (EOC)

➢ Readout time: 50 ns for each pixel

◼ 2-level FIFO scheme

➢ L1 FIFO: de-randomize the injecting charge

Invented a new buffer tree architecture, patented

专利: CN: 2021.11130545.6

➢ L2 FIFO: match the in/out data rate between core and 

interface

Proposed a readout scheme for mitigating data congestion

专利: CN202210631994.1, 2022-06-07

◼ Trigger-less & Trigger mode compatible 

➢ Trigger-less: 3.84 Gbps data interface

➢ Trigger: data coincidence by time stamp, only matched 

event will be readout

◼ Features standalone operation

➢ On-chip bias generation, LDO, slow control, etc. 
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TaichuPix-3 

layout 

Pixel matrix

Periphery readout
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◼ Major challenges for the sensor design

➢ Small pixel size → high resolution (3-5 μm)

➢ High readout speed (dead time < 500 ns @ 40 MHz ) → for CEPC Z pole

➢ Radiation tolerance (per year): 1 Mrad TID

◼ Completed 3 rounds of sensor prototyping in 180 nm CMOS process

➢ Two MPW chips (5 mm × 5 mm )

⚫ TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification

➢ 1st engineering run 

⚫ Full-scale chip: TaichuPix-3, received in July 2022 & March 2023

⚫ Difficulties encountered in submission: no domestic access, complex and long time procedure from 

abroad access, very expensive … 
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TaichuPix prototypes overview

6 design variations TCPX3

15.9 mm

25.7 mm

TaichuPix-1 TaichuPix-2

TaichuPix-3

Pixel size：25 μm × 25 μm
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◼ Functionality of the complete signal chain (including sensor, analog front-end, 

in-pixel logic readout, matrix periphery readout and data transmission unit) 

was firstly proved with X-ray, electron and laser sources. 
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Functionality of complete signal chain

TaichuPix-2

Measured

Hit map of the TaichuPix-2 under X-ray 

from the X-tube for 5 min.

Pixel analog signals from simulation (left) and measurement (right) 

Measured by 

X-ray source
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Analog output of one pixel under 90Sr exposure 

Simulated with 

different injected Q 
Measured results 

consistent with 

simulations in term 

of shape, amplitude 



◼ Four pixel sectors with different analog front-end variations for design 

optimization, S1 used in the full-scale chip due to the lowest ENC

◼ TC2 exposure to 90Sr source
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TaichuPix-2 test with 90Sr

Average cluster size vs. threshold

• Average cluster size decreases with 

threshold as expected

• Average cluster size for S1-S4 larger than 1, 

→ benefits the spatial resolution (better than 

the binary resolution, Τ25 12 ≈ 7.2 𝜇𝑚

S1-S4 features different thresholds for the 

same DAC code
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Sectors Front-end design features

S1 Reference design, inherited from 

TaichuPix-1

S2 PMOS in independent N-wells

S3 One transistor in an enclosed 

layout

S4 Increased transistor size to reduce 

the threshold dispersion

Sec-

tors

Threshold 

Mean (e-)

Threshol

d rms (e-)

Temporal

noise (e-)

Total equiv. 

noise (e-)

S1 267.0 49.8 29.3 57.8

S2 293.4 54.5 26.9 60.8

S3 384.9 58.4 24.4 63.3

S4 411.9 56.6 26.5 62.5

Threshold and noise of different pixel sectors 



◼ Setup: a 3-D linear translation stage with 

a 1064 nm laser

◼ Method:

➢ One dimension laser scan on the test chip 

with a fixed step of 1 µm

➢ Take the linear fit of the observed X,Y 

position as the expected laser position

9
19 June 2023, Sensor chip design and testing

Laser test of TaichuPix-2

Distribution of residual X

Distribution of residual Y

𝑥𝑒𝑥𝑝

𝑥𝑜𝑏𝑠

Test chip 

Measured results



◼ 12 TaichuPix-3 wafers produced from two rounds

➢ Wafers thinned down to 150 μm and diced

➢ Wafers tested on probe-station → chip selecting & yield evaluation
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Large-scale sensor TaichuPix-3

Probe card for wafer test

Wafer after thinning and dicing Thickness after thinning

8-inch waferWafer T212141-02E3

An example of wafer test result

8-inch wafer
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Wafer #3



◼ Pixel threshold and noise were measured with selected pixels

➢ Average threshold ~215 e-, threshold dispersion ~43 e-, temporal noise ~12 e-

@ nominal bias setting
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Threshold and noise of TaichuPix-3

Measured Measured
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TID test setup

TC2 at BSRF 1W2B beamline

TaichuPix-2 Beam

Beamline Specifications

TaichuPix-3

TC3 at BSRF 1W2B beamline

➢ Ionization chamber  is 

used to calibrate 

irradiation dose rate

➢ The irradiation dose 

is regulated by Al foil

➢ Chip was exposed 

with full working 

condition: power, bias, 

clk, …

Aluminum (Al) Irradiation dose rate

96 layers 0.02rad/s

64 layers 3 rad/s

32 layers 394 rad/s

28 layers 722 rad/s

24 layers 1321.6 rad/s

1 layers 42927 rad/s

Attenuation of Aluminum (thickness 

of Al foil is  0.01 mm/layer)
y = 499.39e-15.13x

R² = 0.9954
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TID test result

TC3 Pixel threshold vs. TID

Preliminary

Preliminary

TC3 Pixel noise vs. TID

◼ Test of TC3

➢ All three irradiation regions indicated a 

good performance to 3 Mrad TID

19 June 2023, Sensor chip design and testing

◼ Test of TC2

➢ Normal chip functionality and good 

noise performance proved up to 30 

Mrad TID

TC2 Pixel threshold vs. TID

TC2 Pixel noise vs. TID

[krad]

[krad]

30 Mrad10 Mrad

3 Mrad



◼ The 6-layer of TaichuPix-3 telescope built 

➢ Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board

◼ Setup in the DESY testbeam

➢ TaichuPix-3 telescope in the middle

➢ Beam energy: 4 GeV mainly used 

➢ Tests performed for different DUT 

(Detector Under Test)
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TaichuPix-3 telescope

A open window on PCB 

under TC3 chip to 

reduce multi-scattering

6-layer TaichuPix-3 telescope

19 June 2023, Sensor chip design and testing

TaichuPix-3 

telescope

beam

MIMOSA 

telescope



◼ 2 DUT with different processes tested

➢ DUTB with the standard process; DUTA with the 

modified process

◼ Spatial resolution results

➢ The resolution gets better when decrease the pixel 

threshold, due to the increased cluster size

➢ A resolution < 5 μm achieved for both processes, 

best resolution is 4.78 μm
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TaichuPix-3 beam test result

Spatial resolution vs. pixel threshold

19 June 2023, Sensor chip design and testing

Distribution of residual X

Standard process Modified process

Spatial Resolution

~4.78 µm

Standard 

process



◼ Detector module (ladder) = 10 sensors + readout board + support structure + 

control board

➢ Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support 

➢ Signal, clock, control, power, ground will be handled by control board through flexible PCB

◼ Challenges

➢ Long flex cable → hard to assemble & some issue with power distribution and delay

➢ Limited space for power and ground placement → bad isolation between signals

◼ Solutions

➢ Read out from both ends, readout system composes of three parts, careful design on 

power placement and low noise
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Ladder readout design

Ladder readout system

19 June 2023, Sensor chip design and testing

10 TaichuPix chips
Interposer board Interposer board 

FPGA board FPGA board

553 mm



◼ Design key points of the flexible board

➢ Carefully chosen stack-up, minimum the thickness

➢ Appropriately sacrifice the slow signals to guarantee the shielding of the major signals 

and the low impedance path for analog power supply.

➢ Very challenging in manufacture because of the extremely long & thin PCB routing

◼ Design key points of the interposer board 

➢ Ultralow noise power supply to chips, RMS noise ~1 μV

➢ Low noise DAC reference: 16 bits, 1 LSB INL

➢ Independent power supply and data path for back-to-back ladders
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Ladder readout design

19 June 2023, Sensor chip design and testing

Functional block diagram of a ladder readout unit

Power and ground

Control bus

Receive data & clk

Linear regulator

DAC

Data link

Chip configuration

Data assembly

FIFOs

Flexible board Interposer board FPGA board



◼ A full ladder includes two identical fundamental readout units

➢ Each contains 5 TaichuPix chips, a interposer board, a FPGA readout board

◼ Functionality of a full ladder fundamental readout unit was verified

➢ Configuring 5 chips in the same unit 

➢ Scanning a laser spot on the different chips with a step of 50 µm, clear and correct 

letter imaging observed

➢ Demonstrating 5 chips working together → one ladder readout unit working 
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Laser test result of ladder

19 June 2023, Sensor chip design and testing

Laser tests on 5 Taichupix chip on a full ladder

(”CEPCV” pattern by scanning laser on different chips on ladder)

Interposer

5 chips on ladder

U8 U7 U6 U5 U4 U3 U2 U1U9U10InterposerFPGA FPGA 

Fundamental readout unit Fundamental readout unit

Full ladder readout



◼ The full-scale and high granularity pixel prototype, TaichuPix-3, has been 

designed and tested  

◼ The project design indicators were achieved

◼ Readout electronics for the sensor test and the ladder readout were 

developed  

➢ Performed the sensor characterization in the lab successfully

➢ Completed beam tests for the pixel sensor prototype and the vertex detector 

mechanical prototype 
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Summary

19 June 2023, Sensor chip design and testing

Project indicators Test results

Spatial resolution 3-5 μm 3.98/4.12 μm for X/Y dir.

(laser test)

4.78/4.85 μm for X/Y dir. 

(beam test)

TID > 1 Mrad > 3 Mrad



20
19 June 2023, Sensor chip design and testing

Backup



1. 魏晓敏, 张浩楠,王佳,薛菲菲,郑然,胡永才. 一种树状组织的缓存结构及其应用. 

CN: 2021.11130545.6，2021-11-5
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电路和数据压缩方法, CN202210632037.0，2022-06-07

3. 王佳, 杨聚鑫, 郑然, 魏晓敏, 薛菲菲, 胡永才. 一种小面积快速瞬态响应全片上

集成LDO电路, CN202111161887.9，2021-9-30
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ADC结构, CN202111089036.8，2021-9-16
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Patent（专利）



◼ Based on ALPIDE* front-end scheme

➢ modified for faster response 

➢ ‘FASTOR’ signal delivered to the EOC 

(end of column) when a pixel fired, 

timestamps of hit recorded at pos. edge 

of ‘FASTOR’

22

Pixel analog front-end

*Ref: D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042

Delay time of FASTOR with respect to the pulse 

injection vs. injected charge. The delay time was 

measured by the timestamp of a step of 25 ns.

time walk

Pixel analog output

Pulse injection “FASTOR” at EOC, 

derived from pixel 

digital output

pulse length

delay time

Schematic of pixel front-end

19 June 2023, Sensor chip design and testing



◼ Simplified column-drain readout:

 Each double column shares a common Fast-Or bus for hit indication 

 Common time stamp register @40MHz will record the hit arrival time

 Hit pixels in the same cluster will share a common time stamp as the Trigger ID

◼ Two parallel digital readout architectures were designed:

 Scheme 1：ALPIDE-like: benefit from the proved digital readout in small pixel size

➢ Readout speed was enhanced for 40MHz BX

 Scheme 2：FE-I3-like: benefit m the proved fast readout @40MHz BX (ATLAS)

➢ Fully customized layout of digital cells and address decoder for smaller area

23

Pixel architecture – parallel digital schemes 



◼ Designed for low power 

 Only the hit (fastor) info & address are fannout from the pixel 

array

 Only the read (acquisition) signal is fanned in to the pixel array

➢ Clock & time stamp are localized only in the EOC, 

different from FE-I3

◼ Optimized @ CEPC hit rate

 Common time stamp recorded for a full double column  

➢ For low power 

➢ Column is hit every 8.3us / pixel is readout in 2 clocks 

(50ns) / cluster size 3 pixels

➢ Dead time 500ns – 98% trigger efficiency 
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Readout & Periphery
 1  2  3  4  5  6  7  8  9  10  11  12  13  14 

0 1 1022 1023

0 1 1022

TDAP

TDFOR

ADDR is taken at the positive edge of clock when latch_en is high.

Fastor Posedge is syncronized by the CLK negative edge followed a CLK positive edge..

Fastor negedga is not syncronized.

0<TDFOR<2*Tclk-TDin0<TDAP<1.5*Tclk-Tsu

1023

1023 1023

1023 1023

0 1 1022 1023

TDAN TDAN>0.5*Tclk+Thd

TimeGen

Fastor(EOC)

READ(EOC)

READ(top)

ADDR_FEI3_i

pullN

Latch_en

ADDR_FEI3_o

CLK

fastor_syn

latch_en_Per

addr_rcv

◼ Time stamp recorded when Fastor is 

valid

◼ Each pixel readout by 2 clocks (50ns)

 Worst delay ~ 25ns

➢ Sim by 512 rows (full size)

➢ TDA: read sent –addr come 

 Address latch @ 37.5ns

➢ @1.5 clock

➢ Enough headroom for all corners 



◼ FIFO1 group for 32 DCols

➢ Limited by the 25um pitch

➢ Depth ≈ 9 *22bits (8+10+4)

➢ Row-level priority readout to 

group interface 

◼ FIFO2 for 4 FIFO1-Group

➢ Round-robin in 4 groups by data 

mux

➢ DualPort SRAM for each FIFO2

➢ Depth 256 * 32bits 

◼ Serializer interface with PLL & 

CML/LVDS

➢ Trigger mode @160Mbps LVDS 

max

➢ Triggerless mode @ 4Gbps 

CML max

25

Readout & Periphery on 2 level FIFOs

*  When 8b10b encoading is enable, valid data bandwidth is 70MHz due to some filling code.

19 June 2023, Sensor chip design and testing



◼ Motivation: 

➢ Share the storage 

volume

➢ Reduce the area and 

optimize clock tree

➢ FIFO volumn：288

➢ L1-L5：4

➢ L6: 32

➢ Router：

➢ Timestamp priority

26
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FIFO Tree for 32Dcol
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◼ 8 bit time stamp can cover a range of 

6.4us @ 40MHz

◼ Designed for trigger readout by 

default 

➢ Considering the non-overlapped time 

stamps, estimated trigger latency is ~3us 

maximum

➢ Trigger ID calc. by the trigger’s time 

stamp – latency

➢ Only matched event be readout  

◼ All the raw data can also be readout 

in triggerless mode

➢ 8b10b encoder added for balanced 

bitstream at Gbps

⚫ Limited by the 32bit serializer, a 32-bit 

data is encoded in two words

❑ Discussion in the following part

⚫ Each with 20bit encoded info and 12bit 

dummy

⚫ When data is invalid, k28.5 code will be 

sent for data alignment 

27

Trigger & triggerless readout

◼ A window can be set to cover the trigger 

uncertainty

➢ Time walk, jitter, …

➢ By default a ±3LSB(=±75ns) window is set 

(=7LSBs), 

➢ Pixel analog’s speed is set with the window 

correspondingly (for low power or high time 

resolution )

19 June 2023, Sensor chip design and testing



◼ High speed clock is generated by the on-chip PLL

◼ Serializer is based on balanced 2：1 Mux architecture

➢ ✔：Benefit for the speed at high clock frequency 

➢ ✖：Length of the Ser cannot be configured

◼ By default, 160Mbps data rate (plain code w/o 8b10b) will be set

➢ MSB D<31> will be used for data synchronization, independently output

➢ CML (Gbps) / LVDS (≤160Mbps, in engineering run) optional for optimized power

28

High speed serial link

19 June 2023, Sensor chip design and testing



◼ Structure of the DAC

➢ Voltage DAC (VDAC)

➢ Current DAC (CDAC)

➢ Bandgap(BGR)

➢ MUX 7 to 1

➢ Current bias reference generation

◼ Characteristics

➢ Voltage DAC (VDAC)

⚫ 10 bit

⚫ LSB:1.56 mV

⚫ Range:0~1.6 V

➢ Current DAC (CDAC)

⚫ 8 bit

⚫ LSB:40 nA for common, 0.1nA for ITHR

⚫ Range:0 nA~10.2 μA

29

Bias generation
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◼ All the configuration bits can be loaded 

by the common SPI interface controlled 

in the Periphery block

➢ Chip global operation mode

➢ DAC bias tuning 

➢ PLL status 

➢ Pixel matrix CalEn/Mask bits

◼ Standard SPI protocol designed, 8 bits 

loading each time

◼ Pixel matrix slow control by two steps

➢ Write one row by SPI, 8 cols each time

➢ Generate a shift clock by SPI, 1clk each time

➢ Send a load pulse, depending on 

CalEn/Mask configuration

➢ Problem left to be solved: matrix 

configuration speed should be speed up by 

backend electronics

30

Chip slow control scheme 
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◼ Readout system for single-chip includes

➢ A dedicated test board for chip wire-bonding and power link

➢ A readout board loaded with a FPGA to perform chip configuration and data 

readout

➢ A DC power supply

➢ A PC

31

Readout system of TaichuPix chips 

Test board Readout board

Structure of the readout system
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◼ Electrical performance verified by injecting external voltage pulses 

into pixel front-end

32

Electrical test

Analog output of a pixel @ Vin = 0.9 V
Measured “S-curve” for 128 pixels 

Threshold

Threshold dispersion

Noise (peak-to-peak )

Chip 

periphery
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◼ Data readout in DDR mode

◼ Data interface was tested by the on-

chip PRBS source, a high speed 

oscilloscope (@16Gsps), and code 

stream verified in FPGA

◼ BER qualified till 3.36 Gbps, failed at 

4.48 Gbps

◼ Concerning the highest data rate for 

triggerless at 4 Gbps, at least 2 SER 

interface ports needed

◼ Thus bit rate @2.24 Gbps is safe and 

power optimized 

33
19 June 2023, Sensor chip design and testing

Test of the data interface (TaichuPix-1) 

@2.24Gbps

@3.36Gbps

Bit rate 2.24Gbps 3.36Gbps 4.48Gbps

Clk freq 1.12GHz 1.68GHz 2.24GHz

BER 6.59e-18 9.14e-13 3.23e-5

Tj@e-12 141.63ps 123.27ps 147.14ps

Rj 5.39ps 4.84ps 5.35ps

Dj 64.77ps 54.26ps 70.90ps



◼ Pixel array includes 4 sectors with different transistor parameters/layout 

for analog front-end, S1 chosen for the full-scale design.

◼ Threshold can be tuned by changing ‘ITHR’ (a global current bias)

3419 June 2023, Sensor chip design and testing

Performance of threshold and noise of TaichuPix2

Chip4 Threshold Mean 

(e-)

Threshold

rms (e-)

Temporal

noise (e-)

Total equivalent 

noise (e-)

S1 267.0 49.8 29.3 57.8

S2 293.4 54.5 26.9 60.8

S3 384.9 58.4 24.4 63.3

S4 411.9 56.6 26.5 62.5

Mean threshold of Sector1 vs. ITHR setting

Sector1 

Noise hit rate < 10-10/event/pixel 

for the measured threshold range



◼ Chip was exposed with full working condition: power, bias, clk, …

◼ Dose rate ~17.63 krad/min for the first 2.5 Mrad, then 211.56 krad/min 

for 51 min, then 1.24 Mrad/min for 15 min

◼ Normal chip functionality and good noise performance proved up to 

30 Mrad TID
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TID test on TaichuPix-2

Pixel threshold vs. TID

TaichuPix-2

TaichuPix-2 irradiated at BSRF 1W2B 

beamline (6 keV X-ray)

beam

Pixel noise vs. TID
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➢ The energy of X-ray  

is set to 12 KeV

➢ Ionization chamber  

is used to calibrate 

irradiation dose rate

➢ The irradiation dose 

is regulated by 

aluminum foil
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TID test on TaichuPix-3

Aluminum (Al) Irradiation dose rate

96 layers 0.02rad/s

64 layers 3 rad/s

32 layers 394 rad/s

28 layers 722 rad/s

24 layers 1321.6 rad/s

1 layers 42927 rad/s

Attenuation of Aluminum (thickness 

of Al foil is  0.01 mm/layer)

Beamline Specifications Analog signal of the pixel monitored by the oscilloscope

y = 499.39e-15.13x

R² = 0.9954

0
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37

TID test on TaichuPix-3

TaichuPix-3 irradiated at BSRF 

1W2B beamline (12 keV X-ray)

Position1 Position2Position3

Full image of the X-ray beam 

spot(position 1)

Pixel threshold vs. TID

Preliminary

Preliminary

Pixel noise vs. TID

◼ Chip was exposed with full 

working condition: power, bias, 

clk, …

◼ Dose rate ~1.2 rad/min for the 

first 12 min, in order to find the 

position of beam spot.

→ The size of beam spot agrees 

with the expectation of 1 mm × 0.6 

mm 

◼ Dose rate ~43.3 krad/min for 69 

min until total dose over 3 Mrad.

◼ All three irradiation regions 

indicated a good performance to 

3 Mrad TID
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◼ Process: 180 nm CMOS Imaging Sensor process (7 metal layers)

◼ Pixel cell copied exactly from MPW +  scaled logic with new layout 

Periphery + debugged/improved blocks + enhanced power network 

38

Overview of the full-scale prototype

1. Pixel array 

1024*512 

2. Periphery 

3. DAC & Bias 

generation 

4. Data interface

5. LDO (test 

blocks)

6. Chip inter-

connection 

features

7. Scribe-able top 

power 

connection 

features   
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◼ 12 TaichuPix-3 wafers produced from two rounds

➢ Wafer #1-6 from modified process, 7-12 from standard process

39

Yield of TaichuPix-3

19 June 2023, Sensor chip design and testing

Wafer num. Yield Wafer num. Yield

1 0.65 4 0.475

2 0.725 5 0.625

3 -- 6 0.525

7 0.775 10 0.675

8 0.725 11 0.6

9 0.275 12 0.35

1st round 2nd round



◼ Flex: for chip bonding and providing power & control bus

➢ Minimize material budget: limited height of flex, minimum set of signals

➢ Robust power supply 

➢ Challenging in manufacture due to long and thin flex 

◼ Interposer board 

➢ Provide power supply 

➢ DAC, reference, linear regulator

➢ Data link to FPGA

40

Ladder readout design

◼ FPGA board

➢ Communication with chips

➢ Data processing and package data 

➢ Readout to PC via 1Gbps Ethernet

➢ Capability of 6 Gbps readout and 2GB 

internal DDR memory

553 mm

19 June 2023, Sensor chip design and testing
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Design of the flex board
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Ladder stack-up



◼ Flexible board from FASTPRINT company

➢ Thickness: 0.162 mm (2-layer); 0.273 mm (4-layer); 

◼ Flexible board from Zsipak company

➢ Thickness: 0.161 mm for 2-layer; 0.213 mm for 4-layer

42

Production of flex boards 

Old 4-layer

stiffener on 

backside of socket

New 4-layer

No stiffener
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Design specs. Measured

Spatial resolution* 3~5 μm 4.78 μm (best)

TID* > 1 Mrad > 3 Mrad

Pixel pitch ≤ 25 μm 25 μm

Chip size ~1.4 ×2.56 cm2 1.59 ×2.57 cm2

Dead time < 500 ns ~ 300 ns

Data rate 110 Mbps (trigger)

3.84 Gbps (triggerless)

Not tested (trigger)

Currently 160 Mbps tested 

(triggerless)

Power density < 200 mW/cm2 89 – 164 mW/cm2 @40 MHZ
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TaichuPix-3 specification & performance

*project indicator
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Interposer

◼ Functionality of flex readout was first verified by two chips bonded

➢ Chips U10 & U9 can work independently 

➢ Two can work simultaneously, NO error code/cross-talk found
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Laser test result of ladder flex  

U10 U9 

Gap ≈ 175 um = 7 pixels

U10 U9
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chips on ladder

U8 U7 U6 U5 U4 U3 U2 U1U9U10InterposerFPGA FPGA



◼ Detection efficiency vs. threshold (4 GeV)

➢ The efficiency decreasing with increasing threshold

45
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TC3 beam test results



◼ Considering 6 double-sided ladders

46

Design of DAQ 
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