Test beam results for CEPC vertex detector prototype

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Shuqi Li

- Institute of High Energy Physics, Chinese Academy of Sciences
 - On behalf of CEPC vertex detector group
 - 19.06.2023

Overview of the baseline vertex detector Second test beam on vertex detector mechanical prototype at DESY on First test beam on pixel 04/2023 sensor prototype at

DESY on 12/2022

DESY TB21 beam line

- Electron positron synchrotron DESY II
- Beams are converted bremsstrahlung beams from carbon fibre targets
- → Up to 1000 particles per cm²
- Energy from 1 to 6 GeV
- Energy spread of ~ 5% and divergence of ~ 1mrad

- The data read out by a specialised DAQ software
- The event building by finding hits with the coincidence of time stamp
- The centre of the cluster is the geometric centre of the gravity of the neighbouring fired pixels
- The alignment procedure using the Millepede program
- Least squares straight line fit

A dedicated offline analysis framework developed for test beam data

- Track finding and reconstruction
- Finding hits in every chip with time stamp coincidence
- Clustering: geometric centre of gravity of fired neighbouring pixels
- Track fitting
- no magnetic field
- least squares line fitting

$$\chi^2(\alpha) = \sum_{i=1}^n \frac{(f(m_i, \alpha) - m_i)^2}{\sigma^2}$$

 m_i : measured points position (exclude the measured point at DUT) σ : the spatial binary resolution, $25\mu m/\sqrt{12} \approx 7.22\mu m$ (the actual measured resolution would be better than 7.22 µm due to the cluster sharing effects) α : straight line fit parameters

Alignment

- The measured hits position biased by the misaligned geometry
- Method: Millepede matrix method

$$\begin{split} \chi^2 = \sum_{j \in tracks} \sum_{i \in hits} \vec{r}_{ij}^T(\underline{g}, \underline{l}_j) V_{ij}^{-1} \vec{r}_{ij}(g, l_j) \\ & \text{g: Alignment parameters} \\ & \text{l: track parameters} \end{split}$$

- Six alignment parameters considered for every chip position Translation along X, Y, Z direction Rotation around X, Y, Z axis
- Misalignment broadens and shifts the residual distribution

Pixel sensor prototype beam test @ DESY || ➡ Setup

- Pixel sensor prototype beam test (09/12/2023 -24/12/2023)
- 6 equally spaced detector module with TaichuPix3
- 2 detector under test (DUT) TaiChuPix3 with different

processes tested **DUT**_A with modified process **DUT**_B with standard process

15.9 mm

25.7 mm

- 4 cm between each plane
- sensor size: 1024 columns x 512 rows
- sensor pitch: 25 um
- an open window used to decrease the multi-scattering from the PCB board

Hitmap acquired by DAQ

- A specialised DAQ software is used to configure each chip in parallel
- Considering the data rate and beam performance, the main beam energy used for the

first beam test was 4 GeV

User interface of DAQ software CEPC DAQ

		-		
		System Configuration Pixel Configuration		
Config		Storage Path Storage Folder: /home/daq_1/Data	Select	
Start		Mode Selection		
Stop		Continuous Mode Apulse Test Threshold Scanning		
Terminate		Record		
Run State INIT	FIALIZED	Description:		
Run Number		Electronics Configuration	it hoards.	
Run Start Time Run Stop Time		01 Board 02 Board 03 Board 04 Board	05 Board 06 Board	
Run Active Time		07 Board 08 Board 09 Board 10 Board Update pixel configuration? Yes No	OK 11 Board	
Time	Туре	Info		
2022-11-13 00:50:38	INFO	Interface initialization completed		

Offline analysis results of first test beam Cluster size

- The peak value for DUT_A is 1 pixel, around 2 pixels for DUT_B
- Less charge sharing effects in modified process with full depletion

- In general, the higher the threshold, the smaller the cluster size as expected
- If lowering the threshold, cluster size will be dominated by cluster with 2 hits

Spatial resolution (4GeV)

The unbiased residual distribution at 218 e- of standard process

- The spatial resolution extracted by the unbiased residual distribution after substract the track uncertainty
- The spatial resolution less than 5 um

• For DUT_B with standard process, a worse resolution occurs when the threshold < 218 e- since the larger noise at lower threshold

• Efficiency vs. threshold (4GeV)

• Efficiency is the ratio of tracks that match the hit on the DUT within a distance d around the predicted hit from the telescope to all tracks of the telescope

$$\epsilon = rac{N_{|x_{meas},y_{meas}-x_{meas}-x_{meas}-x_{meas}-x_{meas}-x_{meas}-x_{meas}-x_{meas}-x_{meas}-x_{max}}{N_{tel}^{Trac}}$$

- With increasing threshold, the efficiency decrease
- maximum eff. for DUT_A is 99.4%, maximum eff. for DUT_B is 98.7%

ks $|x_{pre}, y_{pre}| < d$ cks

Mechanical prototype beam test @ DESY || ➡ Setup Prototype under the protection of a transparent cover

- mechanical prototype beam test (11/04/2023 -24/04/2023)
- 6 double sides ladders with 2 TaichuPix3 chips in every side (totally 24 chips installed)
- Biggest collimator available (2.5 x 2.5 cm2) used to

focus on the chips on prototype The prototype was placed in a black box to shield the light

The fan or dry ice used to cool down the prototype

Hitmap acquired by DAQ

- The data rate for DAQ is ~ 12.5 MB/s
- Operating 21 sensors together with different energies and threshold
 - One flex PCB board broken and unreplaceable at DESY
 - One sensor on Ladder_IP28 sent
 bad data

Both the prototype and the DAQ
work well and stably for a long
time under different energies and
thresholds

Hitmap

Offline analysis results of second test beam

- Split up the full geometry into downstream and upstream ladders
- Considering the real vertex detector, the tracks will come from the IP. So, only 3 ladders will be transversed by the 128 tracks.
 - It's enough to use the data from the downstream ladders with 6 chips to analyses the full prototype performance
 - Taking the chip with modified process in front of the middle layer as DUT

Single point resolution

- •6 GeV electron beam
- DUT at lowest setting threshold $\xi \approx 330e^{-1}$

- The unbiased residual distribution of DUT with modified process
- The resolution < 5 um for both x and y direction
- Split the DUT into several regions along the chip's column (x loc) and row (y loc) direction
- The resolution in different region of chip < 5 um
- More sophisticated alignment procedure need to be done to remove the variations as function of x and y

Summary

- The offline analysis framework developed for the test beam data
- The spatial resolution achieved the indicator goal of 3-5 µm using two test beams.

	Project indicators	Beam Test results	
Spatial resolution	3 - 5 µm	Pixel sensor prototype	Vertex detector mechanical prototype
		4.78 μm (threshold = 218 e-)	4.93 µm (threshold = 330e-)

- The different characteristics of the two TaichuPix3 chips with different processes were verified
- The prototype and DAQ can work well under different thresholds and energies
- The results of the cluster size, efficiency and resolution can be comparable between the two test beam

Backup

Spatial resolution studies

The spatial resolution of DUT

- applying the alignment parameters to the measured hit position
- the spatial resolution of DUT evaluated from the unbiased residual distribution

$$\sigma_{DUT} = \sqrt{\sigma_{res,unbiased}^2 - k\sigma_{tel}^2}$$

assuming same intrinsic resolution for all chips

$$\sigma_{DUT}^{2} = \frac{\sigma_{res,unbiased}^{2}}{1+k}, k = \frac{\sum_{i}^{N} z_{i}^{2}}{N\sum_{i}^{N} z_{i}^{2} - (\sum_{i}^{N} z_{i})^{2}}$$

- z_i is the z position of plane in global coordinate
- unbiased residual $\sigma_{res,unbiased}$: the difference between measured hit position on DUT and the predicted one extrapolated from the track of telescope
- least squares straight line fit

$$\chi^{2} = \sum_{i}^{n} \frac{(x_{pre}, y_{pre} - x_{mea}, y_{mea})^{2}}{\sigma_{x,y}}$$
$$\sigma_{x,y} = \frac{25\mu m}{\sqrt{12}}, 25 \text{ um is the pixel pitch}$$

• a track quality χ^2 cut added to decrease the effects from multi scatter ing

single plane resolution after subtracted track resolution

Cross checked with another run with same threshold, shows same resolution

cluster size

standard process, threshold 197 e-, eff. = 98.6%

modified process, threshold 265 e-, eff. = 99.4%

