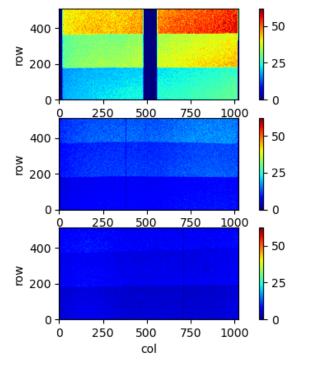


Lessons learned and Future Plan (mainly on electronics)

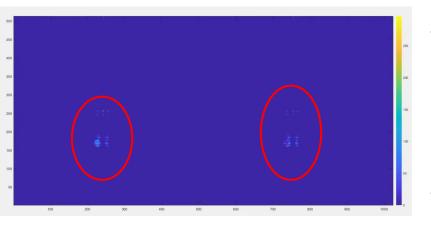
Wei Wei On behalf of the CEPC MOST2 Vertex detector design team


2023-6-8

Outline

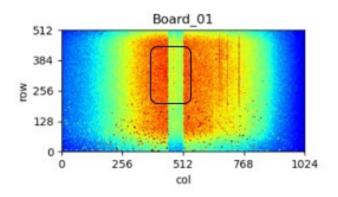
- Known & to-be-known issues and possible solutions
- To do based on what we have
- Future plan with current TaichuPix
- Towards the next version of TaichuPix

Known Issue – repeated counts


- Higher rows will give repeated data for a single hit
 - The higher number, the more times
 - The reason was understood
 - The fastor-clear(hit flag) is delayed due to the large matrix and long wire, then the periphery sees "multiple hits"
 - will only affect the last pixel in one hitcolumn

Current solution

- Repeated data was monitored in FPGA, redundant information was cancelled
 - No effect on resolution, only has impact on hit rate
- Solutions for future chip
 - Modify the fastor bus


Known Issue – Ghost data pattern

- Ghost data pattern can be found with column distance of 512/256/128.....
 - Will be more serious on ladder
- Reasons almost certain
 - Imperfect timing constraint during the synthesis of periphery logic
- Current solution (imperfect)
 - Lower down the system clock from 40MHz -> 20MHz (test board) -> 15.6MHz (ladder), ghost disappeared
- Solutions for future chip
 - More refined constraint on circuit synthesis

Known Issue – 32 cols lose during working

- A set of columns(typically 32) will die after a period of working, can only be waken up by re-config.
- Reason still unclear
 - No corresponding structure (based on 32 columns) on chip can explain
- Current solution
 - Rely on data monitoring, reset after problem detection or a regular period
- Next step
 - More experiment needed to understand the issue, make it more predicable
 - Laser, Beta source test
 - Is it related to the hit rate and FIFO, as we suspected?

Known Issue – threshold raised with multi-chips

Flex num.	Chip pos.	Chip num.	Status	Min. ITHR
V1p3-L	U1, U2	W2R36, W1R37	Work	U1:128; U2: 128; U1&U2: 192&192
V1p3-M	U9, U10	W1R38, W1R41	Work	U10:96; U9:96; U9&U10: 224&224
V1p3-N	U9, U10	W9R34, W9R33	Work	U10:160; U9:160; U9&U10: 192&192
V1p3-O	U9, U10	W9R31, W9R30	Work	U10:128; U9:128; U9&U10: 224&224

• Min threshold will raise when multiple chips work together

• Due to compound reasons

- No local LDO on chip, chip will see crosstalk from others coming from the power supply
- High ground R from ladder limited width, limited layer, long routing
 > crosstalk on common path
- No effect solutions for now
 - Multi-layer ladder is proved to be effective, but not good for material
- What can we do in future?
 - On chip LDO must be involved; Serial powering for multiple chips to be studied
 - Wider matrix may help for the ladder design, but big impact on chip timing

Can be improved – multi-chip synchronization

- Time stamp 0 for multiple chips are now defined by a test pulse at the initiate stage
- Can be improved for a more defined logic on chip
 - Better to be considered globally with other detectors
 - Also the trigger scheme

To be studied – behavior of a real full ladder

- A full ladder with all chips, double sided, for sure is the recent goal
- To see how serious the threshold will raise
- To see if there is any show stopper(data, power, noise, crosstalk...) for the real full ladder

To be studied – neg sub, std/mod process

- It is said, negative substrate voltage can help for the resolution
 - Found very risky during the TaichuPix2 test (std process)
 - Also heard it is not achievable from other colleagues
- It is a chance to make some further study based on different processes
 - Behaves differently on std/mod processes?
- What is the real benefit/difference between std/mod processes?
 - Further test and study with more comparison
- To to
 - A new PCB/ladder that can support for negative substrate power supply
 - New challenge on ladder design
 - More beam tests afterwards

To be studied – advanced chip features

- Trigger readout mode not considered
- No trigger detector considered during the beam test
 - What is the time resolution of the prototype with multiple layers?
- Side connections for slow controls not verified at the ladder level
 - Will help for the ladder design
 - Also possibly needed in the real detector
 - Worth to try, but new challenges for wire bonding
- High speed data link at the ladder level
 - Current data speed at 160Mbps for all the test
 - Worth to verify high speed data communication at the ladder level
 - > Is it too sufferred from imperfect data path? Is it too noisy to the chip?
 - > What is the power consumption for triggerless mode

To be studied – low material ladder?

- The conventional PCB process based on copper involved high material for multi layers
- Solutions
 - We know at the first day, Al Flex can greatly help
 - But we cannot find a vendor in China
- Keep finding, or collaborate with abroad?
- Local PCB R&D workshop on Al might not be realistic

Conclusion

- Key words for current issue
 - Timing
 - Robustness
 - Powering
- Very limited which can be done from the ladder design, based on current constraint
- Try to collect issues as much as possible before the next chip tapeout
- Can we use Towerjazz 65nm someday?
 - All specs from CEPC can be satisfied then

Thank you !