Status of the CEPC Flavor Physics White Paper (Phase I) 1000,000,000+ Or Flavor Physics at Tera - X

Lingfeng Li Brown University Jul. 4, 2023

The 2023 international workshop on the CEPC

- Higher luminosity as the accelerator design keeps upgrading
 - ≥ 2 interaction points and various detectors

Flavor physics also need energy larger than 91 GeV

ATLAS/CMS

Scale

```
Top-Factory
Higgs-Factory
W-Factory
era-Z
m<sub>Z</sub> m<sub>H+Z</sub>
```

н

3

Cornerstones at CEPC

Neutrinos
 Neutrals

 (photon/π⁰/η...)

 Rare modes
 BSM states

 Flavor Tagging $\Box b \rightarrow c \rightarrow \tau$ cascade □ Long-lived particles Boost: O(fs) time scales Heavy Species: Bs, Bc, Λb , exotics...

Multiple soft

tracks

Neutrinos
 Neutrals

 (photon/π⁰/η...)

 Rare modes
 BSM states

Lepton Collider, Very Clean

Beam energy spread: O(0.1%)

Beam transverse speared: O(1) μm

 \blacktriangleright Overall Z = 4

> Full trigger rate:

O(100) kHz

 ❑ Leptons
 ❑ Flavor Tagging
 ❑ b→c →τ cascade
 ❑ Long-lived particles

PID techinques > Transervese vertex > New ECAL as dE/dx & time resolution of designs of flight
 O(10) μm

Average boost of b ≈ 5-7, > 25 for τ Average boost of b ≈ 5-7, > 25 for τ For τ For τ For τ For τ

Unique opportunities from W/H/top modes

Particle	Belle II	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
B^0, \bar{B}^0	$5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$	4.8×10^{11}
B^{\pm}	$5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	4.8×10^{11}
B^0_s, \bar{B}^0_s	$6.0 \times 10^8 \text{ (5 ab}^{-1} \text{ on } \Upsilon(5S))$	1×10^{13}	1.2×10^{11}
B_c^{\pm}	_	1×10^{11}	$7.2 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	_	2×10^{13}	1×10^{11}
D^0, \bar{D}^0			5.2×10^{11}
D^{\pm}			$2.2 imes 10^{11}$
D_s^{\pm}			8.8×10^{10}
Λ_c^{\pm}			5.5×10^{10}
τ^{\pm}	$4.5 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$		1.2×10^{11}

Item	Baseline [1]	Objective	Comments			
Basic Performance						
Acceptance $ \cos \theta < 0.99$ [1]						
Threshold	200 MeV [37, 38]	$100 { m ~MeV}$	For tracks & photons			
Beam energy spread	$\mathcal{O}(0.1\%)$ [1]					
Tracker momentum resolution	$\mathcal{O}(0.1\%)$ [1]					
ECAL energy resolution	$17\%/\sqrt{E} \oplus 1\%$ [1]	$3\%/\sqrt{E}$ [31]				
HCAL energy resolution	$60\%/\sqrt{E} \oplus 1\%$ [1]					
Vertex resolution	10–200 μm [1]					
Jet energy resolution	3-5% [1, 39]		For $20-100 \text{ GeV}$			
$\ell - \pi$ mis-ID	< 1% [40]		In jet, $ \vec{p} > 2 \text{ GeV}$			
$\pi - K$ separation	$> 2\sigma$ [1]	$> 3\sigma$ [34]	In jet, $ \vec{p} > 1$ GeV, TOF+ dE/dx			
Flavor Physics Benchmarks (Depending on the Above)						
$\sigma(m_{H,W,Z})$	3.7% [1]		Hadronic decays			
b -jet efficiency \times purity	$\sim 70\%$ [1]		In Z hadronic decays			
c -jet efficiency \times purity	$\sim 40\% [1]$		In Z hadronic decays			
b-jet charge tagging $\epsilon_{\text{eff}} = \epsilon (1 - 2\omega)^2$	-	15-25% [33, 41]	For B_s			
π^0 efficiency × purity	$\gtrsim 70\%$ [38]	$\gtrsim 80\%$ [31]	In Z hadronic decays, $ \vec{p}_{\pi^0} > 5 \text{ GeV}$			
K_S^0, Λ, D efficiency	60%-85% [42]		In Z hadronic decays, all tracks			
τ efficiency × purity	70% [43]		In $WW \to \tau \nu q \bar{q}'$, inclusive			
τ mis-ID	${\cal O}(1\%)$ [43]		In $WW \to \tau \nu q \bar{q}'$, inclusive			

Indirect Discovery with Flavor Physics

The amplitude of flavor physics in the SM is ALREADY suppressed by the EW scale \rightarrow Many flavored states are long-lived

Indirect Discovery with Flavor Physics

*: certainly depends on the way of interpretation

Indirect Discovery with Flavor Physics

For SM process suppressed by a loop, the same relative precision means a even higher scale*

$$\Lambda_{\rm NP}^{\rm rare} \sim \left(\frac{\alpha}{4\pi} \frac{m_t^2}{m_W^2} G_F |V_{tb} V_{ts}^*| \delta_{\rm rare}\right)^{-\frac{1}{2}} \sim (30 \text{ TeV}) \times \delta_{\rm rare}^{-\frac{1}{2}}$$

*: still depends on your UV theory in mind

Support the CEPC Project

 Origin of matter? understand lepton and baryon numbers
 BSM

Light dark matter?

Lepton Flavor Universality anomalies?

Higgs EWPT Top Flavor 🛽 Tera-Z+ **QCD**

Hardware

Most demanding field: We need better tracker, E(H)CAL, electronics... everything!

Origin of flavor hierarchy?
 CP violation phases from Yukawa?

 Flavor physics beyond the Tera-Z phase?
 Common need in τ phys.

How does asymptotic freedom work with flavor?

New formalism beyond the conventional meson-baryon picture?

Use a plethora of data to improve hadronization 15

The Purpose of the Flavor Physics White Paper (Phase I)

> To summarize the known results in an organized way

➢To provide guidance and recommendation for studies in the next phase

To resonate on relevant programs (e.g. flavor phys.
 @ FCC-ee)

Major Challenges

Excessive statistics, data flow, and precision goals require understanding and control of experimental systematics (otherwise the projections will be very wrong)

Recognize the most valuable analyses for CEPC, even overlooked ones

>Incorporate the appropriate **theory** (not always available)

Flavor Physics at CEPC: a General Perspective

1 Introduction

- 2 Description of the CEPC Facility
 - 2.1 Key Collider Features for Flavor Physics
 - 2.2 Key Detector Features for Flavor Physics
 - 2.3 Simulation Method
- **3** FCCC-mediated Semileptonic and Leptonic *b* Decays
- 4 FCNC-mediated Rare b Decays
 - 4.1 Dilepton Modes
 - 4.2 Neutrino Modes
 - 4.3 Radiative Modes
- 5 CP Asymmetry in b Decays
- 6 Global Symmetry Tests in Z and b Decays

Lingfeng Li | CEPC Flavor WP Status

- 7 Charm and Strange Physics
- 8 τ Physics
 - 8.1 LFV τ Decays
 - 8.2 LFU Tests in τ Decays
 - 8.3 Hadronic τ Decays and Other Opportunities

9 Flavor Physics beyond Z Pole

- 9.1 Exclusive Hadronic Decays of Heavy SM Bosons
- 9.2 $|V_{cb}|$ and W Decays
- 10 Spectroscopy and Exotics

11 Light BSM States from Heavy Flavors

- 11.1 Lepton Sector11.2 Quark Sector
- 12 Summary and Outlook

- > 60 pages, > 200 refs.
- > XX original studies, > YY initiated by local groups, > ZZ contributed to CEPC
- > XXX Detector studies

5 CP Asymmetry in b Decays

Progress in both time-dependent and time time-integrated benchmarks

B0 to pipi @ CEPC	Yuexin Wang
C108, 物理楼	14:00 - 14:15
Bs->Jpsi Phi @CEPC	Mingrui Zhao
C108, 物理楼	14:15 - 14:30

Time dependent measurement (LHCb/Belle II)	Peilian Ll	
C108, 物理楼	15:50 - 16:10	
T-odd CP violation	Qin Qin	
C108, 物理楼	16:10 - 16:30	
Double-mixing CP violation	Yin-Fa Shen	
C108, 物理楼	16:30 - 16:50	
Partial-wave CP violation	zhenhua zhang	
C108, 物理楼	16:50 - 17:10	21

6 Global Symmetry Tests in Z and b Decays

Measurement	Current [101–103]	FCC [104]	CEPC prelim.	Comments
$\frac{\mathrm{BR}(Z \to \tau \mu)}{\mathrm{BR}(Z \to \tau e)}$	$< 6.5 \times 10^{-6}$ $< 5.0 \times 10^{-6}$	${\cal O}(10^{-9}) \ {\cal O}(10^{-9})$	same [105]	$\tau\tau$ bkg, $\sigma(p_{\rm track})$ & $\sigma(E_{\rm beam})$ limited
$BR(Z \to \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$1 \times 10^{-9} \ [106]$	PID limited

Flavor violating Higgs and Z decays	Prof. Michele Tammaro
C108, 物理楼	15:20 - 15:40
LFU/LFV review	Lorenzo Calibbi et al.
C108, 物理楼	09:30 - 09:55
Probing Lepton Flavor Violation at Circular Electron-Positron Colliders	Wolfgang Altmannshofer
C108. 物理楼	10:45 - 11:05

Low-multiplicity **T**/lepton phenomenology is better known in the last few years

LFU/LFV In tau decays	Alberto Lusiani
C108, 物理楼	14:25 - 14:45
Theoretical review on Physics with Tau	Zhihui Guo
C108, 物理楼	14:45 - 15:05
Belle II at Tau Physics/mass	Yubo Li et al.
C108, 物理楼	15:05 - 15:25
EFTs of Weakly-Interacting Light Particle and Their phenomenology in Flavor Physics	Huayang Song
C108, 物理楼	15:25 - 15:45
Tau physics at BES III	涛罗
C108, 物理楼	15:45 - 16:05

Measurement	Current $[134]$	FCC [104]	CEPC prelim. $[105]$	Comments
Lifetime [sec]	$\pm 5 \times 10^{-16}$	$\pm 1 \times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \to \ell \nu \bar{\nu})$	$\pm 4 \times 10^{-4}$	$\pm 3 \times 10^{-5}$		$0.1 \times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\text{track}})$ limited
$\mathrm{BR}(\tau \to \mu \mu \mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$		
$BR(\tau \to eee)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		
$BR(\tau \to e\mu\mu)$	$<2.7\times10^{-8}$	$O(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau \to \mu ee)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		
$BR(\tau \to \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2 \times 10^{-9}$	(0(10-10))	$Z \rightarrow -\infty$ hlm $-(\infty)$ limited
${\rm BR}(\tau \to e \gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2 \times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \gamma \tau \gamma$ bkg , $\sigma(p_{\gamma})$ finited

8 τ Physics

- 8.1 LFV τ Decays
- 8.2 LFU Tests in τ Decays
- 8.3 Hadronic τ Decays and Other Opportunities

7 Charm and Strange Physics

Charm physics measurement at LHCb	Liang Sun
C108, 物理楼	10:55 - 11:15
Charm physics measurement at BES III	Prof. Baiqian Ke
C108, 物理楼	11:15 - 11:35
DiPion distribution amplitudes and the semileptonic decays of strange charm meson	Prof. Shan Chen
C108, 物理楼	11:35 - 11:55

-	Rare Kaon decays	Avital Dery
	C108, 物理楼	09:55 - 10:15

9 Flavor Physics beyond Z Pole

- 9.1 Exclusive Hadronic Decays of Heavy SM Bosons
- 9.2 $|V_{cb}|$ and W Decays

Measurement	Current Limit [134]	CEPC prelim.	Comments
$BR(Z \to \pi^+\pi^-)$	-	$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\text{track}})$ limited, good PID
$BR(Z \to \pi^+ \pi^- \pi^0)$	-	$\mathcal{O}(10^{-9})$	au au bkg
$BR(Z \to J/\psi\gamma)$	$< 1.4 \times 10^{-6}$	$10^{-9} - 10^{-10}$	$\ell\ell\gamma + \tau\tau\gamma$ bkg
${\rm BR}(Z\to\rho\gamma)$	$<2.5\times10^{-5}$	$\mathcal{O}(10^{-9})$	$\tau\tau\gamma$ bkg, $\sigma(p_{\rm track})$ limited

Contributions from phases beyond Tera-Z are non-trivial

FCNC & Rare deacy of Higgs measurements at CEPC	Hao Liang et a
C108, 物理楼	14:30 - 14:5

Lingfeng L	i C	EPC	Flavor	WP	Status
------------	-------	-----	--------	----	--------

Production of heavy hadrons from Z & Higgs decays (NRQCD)	Xuchang Zheng
C108, 物理楼	16:55 - 17:15
Top FCNC	Liaoshan Shi
C108, 物理楼	17:15 - 17:35
Measurement of energy correlators at the CMS	meng xiao
C108, 物理楼	17:35 - 17:55

10 Spectroscopy and Exotics

Very rich physics and a lots of potential discoveries

Exotics experimental status	yanxi zhang
C108, 物理楼	16:10 - 16:35
Production of doubly heavy hadrons (NRQCD)	Hong-Hao Ma
C108, 物理楼	16:35 - 16:55
Production of heavy hadrons from Z & Higgs decays (NRQCD)	Xuchang Zheng
C108, 物理楼	16:55 - 17:15

11 Light BSM States from Heavy Flavors

- 11.1 Lepton Sector
- 11.2 Quark Sector

Theory, simulation, and analysis for (exotic) hadron productions

Fill the relevant gap in charmand strange physics

REFERENCE.

Flavor Phase II Aglobal analysis of Complete the map **CEPC** impacts on the

CKM elements and CP

properties

of LFU/LFV with b

and t decays

Build stronger

connections with

Hggs/EW/top/BSM

physics

Flavor Phase I

Flavor Physics at CEPC: a General Perspective

Summary

- Flavor program at CEPC is a healthy/urgent need
- The white paper (phase I) is ready for external review
- More flavor physicists are encouraged to join
- https://www.overleaf.com/project/64a546abdc3477 d097714c94
- "Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning."

Backup Slides

- **3** Charged Current Semileptonic and Leptonic *b* Decays
 - 3.1 Theoretical Interpretation
 - 3.2 Recent Progress and Directions to be Explored

Anomalies indicating lepton flavor universality violation
 Potential for |V_{cb}| & |V_{ub}| extraction

➢ CP asymmetries are clean

Potentially probe higher scales of new physics

 $B_c \rightarrow \tau v$ measurement, unique at CEPC

Section Summary and Suggestions

Relative precisions ≤ O(1%) achieved Probing multi-TeV scales already

0,0030 0,0015 C_{SL} 0,000 ,0,001 0,0030 0,0015 C_{SR} 0,000 ,0,0015 0,0030 0,0015 С Ч 0,000 0,0015,0000 .0.0015 0.0015 0,0015 0,0030

Recommended future steps:

Differential measurements

(polarimetry, asymmetry ...)

Extend the search on more final

states

Evaluate electron modes with electron PID

S. Descotes-Genon, S. Fajfer, J. Kamenik, M. Novoa-Brunet 2208.10880

- > Most decays are rare (BR < 10^{-5}).
- Relative precisions vary from O(10⁻²-1) determined by final states, probing multi-TeV already
- Unique advantages at CEPC

Section Summary and Suggestions

- Benchmark studies for (double) radiative decays with proper ECAL simulations
- * Modes of heavy hadrons like $\Lambda_{\rm b}$
- \clubsuit Systematically dominated e vs. μ LFU tests

6 Testing SM Global Symmetry with Flavor

Iepton flavor, lepton number and baryon number are conserved in flavor physics

 \sqrt{s} [GeV]

91.2 (Z-pole)

87.7 (off-peak)

93.9 (off-peak)

160 (WW)

240 (ZH)

 $360 (t\bar{t})$

Clear sign of new physics if violation observed

W. Altmannshofer, P. Munbodh, T. Oh, 2305.03869

BR(Z $\rightarrow \tau \mu$) limit down to 10⁻⁹ Also from runs of higher E_{cm} Lingfeng Li | CEPC Flavor WP Status

Recommendations:

 \mathcal{L}_{int} [ab⁻¹]

50

25

25

6

20

1

Need studies on lepton and baryon number violation in the next phases

 $\frac{\delta p_T}{p_T} [10^{-3}]$

1.35

1.33

1.37

1.89

2.60

3.74

 $\epsilon_{\rm bkg}^{x_c} \ [10^{-6}]$

1.53

1.46

1.59

2.49

4.42

8.61

 $N_{\rm bkg}$

 $6400\,\pm\,80$

 350 ± 20

 620 ± 25

 3 ± 2

 7 ± 3

 0.3 ± 0.5

 σ [ab]

55

27

35

17

6.6

 $\frac{\delta\sqrt{s}}{\sqrt{s}}$ [10⁻³]

0.92

0.92

0.92

0.99

1.20

1.41

7 Spectroscopy and Exotics

- ➤ A lot of states, guaranteed DISCOVERY at CEPC?
- Z→bbbb, bbcc, cccc processes may give rise to highly exotic species
- Production & decay largely unknown

 e^+

Recommendations:

- More theory inputs for simulation e^{-1}
- Analysis framework to be developed

8 Charm and Strange Physics

$\Gamma_{9} \qquad (u\,\overline{u} + c\,\overline{c})/2 \qquad (11.6 \pm 0.6)\%$ $\Gamma_{10} \qquad (d\,\overline{d} + s\,\overline{s} + b\,\overline{b})/3 \qquad (15.6 \pm 0.4)\%$

- Z decay also produces a lot of c and s quarks
- ➢ More s quarks (K^(*),∧...) produced by QCD
- Also building blocks of b physics

Lingfeng Li | CEPC Flavor WP Status

Recommendations:

- Have a charm physics program in parallel to bottom ones in the next phase
- ★ Focus on K_s and Λ rare decays, e.g. K_s→µµ(+γ), complementary to future kaon factories

9 τ Physics

- A most powerful tau machine
- Essential for EW and QCD in precision
- Most studies focus on exotic decays

48

46

45

D. Yu et al,

preliminary

 $E_{\mu\gamma}[GeV]$

Section Summary and Suggestions

Measurement	Current [104]	FCC [102]	Tera- Z Prelim. [105]	Comments
Lifetime [sec]	$\pm 5 \times 10^{-16}$	$\pm 1 \times 10^{-18}$		from 3-prong decays, stat. limited
$\mathrm{BR}(\tau \to \ell \nu \bar{\nu})$	$\pm 4 \times 10^{-4}$	$\pm 3 \times 10^{-5}$		$0.1 \times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\text{track}})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$	same	bkg free
$BR(\tau \rightarrow 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$\mathrm{BR}(\tau \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \to \mu ee)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \to \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2\times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_{\gamma})$ limited
$BR(\tau \to e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited

<u>M. Dam, 1811.09408</u>

- More exotic τ decay modes
- Hadronic τ decay for f_K, V_{us}, and α_s (m_τ)
 τ polarimetry/asymmetry at the Z pole for extracting EWPO

10 Flavor Physics at Higher Energies

- 10.1 Exclusive Hadronic Decays of Heavy SM Bosons
- 10.2 $|V_{cb}|$ measurement from on-shell W Decays

10.3 Other Possibilities

See Hao Liang's talk

Current Recommendation:

Flavored hadronization, also crucial for EW & Higgs

11 Production of BSM States from Heavy Flavor Decays 11.1 Light BSM states produced via their coupling with leptons 11.2 Light BSM states produced from FCNC quark decays

5 Hadronic b Decays and CP Violation Measurements
5.1 Theoretical Interpretation (preliminary)
5 Measuring CP Asymmetries

5 Measurements related to Unitarity Triangle angles $\mathbf{64}$ 5.15.2 Notations 5.2.1 CP asymmetries \ldots 665.2.3 Time-dependent distributions with non-zero decay width difference . . . 69 Time-dependent CP asymmetries in decays to vector-vector final states . [70] 5.2.45.2.5 Time-dependent asymmetries: self-conjugate multiparticle final states . [71] 5.3 Common inputs and uncertainty treatment 5.4.1 Time-dependent CP asymmetries in $b \to c\overline{cs}$ decays to CP eigenstates . 84 5.4.2 Time-dependent transversity analysis of $B^0 \to J/\psi K^{*0}$ decays 86 5.4.3 Time-dependent *CP* asymmetries in $B^0 \to D^{*+} D^{*-} K_s^0$ decays 88 5.4.4 Time-dependent analysis of B^0_* decays through the $b \to c\bar{c}s$ transition . . 88 5.5 Time-dependent CP asymmetries in colour-suppressed $b \rightarrow c\overline{u}d$ transitions . . . 89 5.5.1 Time-dependent *CP* asymmetries: $b \to c\overline{u}d$ decays to *CP* eigenstates . . 89

8	B decays to charmless final states					
	8.1	Mesonic decays of B^0 and B^+ mesons	237			
	8.2	Baryonic decays of B^+ and B^0 mesons $\ldots \ldots \ldots$	248			
	8.3	Decays of b baryons	251			
	8.4	Decays of B_s^0 mesons	254			
	8.5	Radiative and leptonic decays of B^0 and B^+ mesons	257			
	8.6	Charge asymmetries in <i>b</i> -hadron decays	270			
	8.7	Polarization measurements in <i>b</i> -hadron decays	276			
	8.8	Decays of B_c^+ mesons	281			

	5.5.2 Time-dependent Dalitz-plot analyses of $b \to c\overline{u}d$ decays $\dots \dots \dots$				
5.6	Time-dependent <i>CP</i> asymmetries in $b \to c\bar{c}d$ transitions				
	5.6.1 Time-dependent <i>CP</i> asymmetries in B_s^0 decays mediated by $b \rightarrow c\bar{c}d$				
	transitions				
5.7	Time-dependent <i>CP</i> asymmetries in charmless $b \rightarrow q\overline{q}s$ transitions 94				
	5.7.1 Time-dependent CP asymmetries: $b \rightarrow q\overline{q}s$ decays to CP eigenstates 96				
	5.7.2 Time-dependent Dalitz plot analyses: $B^0 \to K^+ K^- K^0$ and $B^0 \to \pi^+ \pi^- K_s^0$ [99]				
	5.7.3 Time-dependent analyses of $B^0 \to \phi K_s^0 \pi^0$				
	5.7.4 Time-dependent <i>CP</i> asymmetries in $B_s^0 \to K^+K^-$				
	5.7.5 Time-dependent <i>CP</i> asymmetries in $B_s^0 \to \phi \phi$				
5.8	Time-dependent <i>CP</i> asymmetries in $b \rightarrow q\bar{q}d$ transitions				
5.9	Time-dependent asymmetries in $b \rightarrow s\gamma$ transitions				
5.10	Time-dependent asymmetries in $b \to d\gamma$ transitions				
5.11	Time-dependent <i>CP</i> asymmetries in $b \rightarrow u\overline{u}d$ transitions				
	5.11.1 Constraints on $\alpha \equiv \phi_2$				
5.12	2 Time-dependent <i>CP</i> asymmetries in $b \to c\overline{u}d/u\overline{c}d$ transitions				
5.13	3 Time-dependent <i>CP</i> asymmetries in $b \to c\overline{u}s/u\overline{c}s$ transitions				
	5.13.1 Time-dependent <i>CP</i> asymmetries in $B^0 \to D^{\mp} K_s^0 \pi^{\pm} \dots \dots$				
	5.13.2 Time-dependent <i>CP</i> asymmetries in $B_s^0 \to D_s^{\mp} K^{\pm}$				
5.14	Rates and asymmetries in $B \to D^{(*)}K^{(*)}$ decays				
	5.14.1 D decays to CP eigenstates $\dots \dots \dots$				
	5.14.2 D decays to quasi- CP eigenstates				
	5.14.3 D decays to suppressed final states $\dots \dots \dots$				
	5.14.4 D decays to multiparticle self-conjugate final states (model-dependent				
	analysis)				
	5.14.5 D decays to multiparticle self-conjugate final states (model-independent				
	analysis)				
	5.14.6 D decays to multiparticle non-self-conjugate final states (model-independent				
	analysis)				
	5.14.7 Combinations of results on rates and asymmetries in $B \to D^{(*)}K^{(*)}$ de-				
	cays to obtain constraints on $\gamma \equiv \phi_3 \dots \dots \dots \dots \dots \dots \dots 138$				
5.15	Summary of the constraints on the angles of the Unitarity Triangle				

7	Dec	Decays of b-hadrons into open or hidden charm hadrons				
	7.1	Decay	s of \overline{B}^0 mesons			
		7.1.1	Decays to a single open charm meson			
		7.1.2	Decays to two open charm mesons			
		7.1.3	Decays to charmonium states			
		7.1.4	Decays to charm baryons			
		7.1.5	Decays to <i>XYZ</i> states			
	7.2	Decay	s of B^- mesons			
		7.2.1	Decays to a single open charm meson			
		7.2.2	Decays to two open charm mesons			
		7.2.3	Decays to charmonium states			
		7.2.4	Decays to charm baryons			
		7.2.5	Decays to other (XYZ) states			
	7.3	Decay	s of admixtures of \overline{B}^0/B^- mesons			
		7.3.1	Decays to two open charm mesons			
		7.3.2	Decays to charmonium states			
		7.3.3	Decays to other (XYZ) states			
	7.4	Decay	s of \overline{B}_s^0 mesons			
		7.4.1	Decays to a single open charm meson			
		7.4.2	Decays to two open charm mesons			
		7.4.3	Decays to charmonium states			
		7.4.4	Decays to charm baryons			
	7.5	Decay	s of B_c^- mesons			
		7.5.1	Decays to a single open charm meson			
		7.5.2	Decays to two open charm mesons			
		7.5.3	Decays to charmonium states			
		7.5.4	Decays to a B meson			
	7.6	Decay	s of <i>b</i> baryons			
		7.6.1	Decays to a single open charm meson			
		7.6.2	Decays to charmonium states			
		7.6.3	Decays to charm baryons			
		7.6.4	Decays to other (XYZ) states			

Lingfeng Li | CEPC Flavor WP Status

Taken from HFLAV2019

Flavor Tagging

PV SV SS pion SS proton ^u \bar{d} SS kaon (for B_c⁰) $J \psi$ B^0 d same side opposite side SV b x OS kaon $h_{\rm b}$ $c \rightarrow s$ $b \rightarrow c$ $b \rightarrow X \ell^-$ OS muon OS electron OS vertex charge **OS** Charm

Tagging strategys are similar to LEP and LHCb

Lingfeng Li | CEPC Flavor WP Status

Effective tagging power @ LEP ~ 20%, expected to improve further @ CEPC (vs. ~5% @LHCb & ~35% @ Belle II)

51

Time-Integrated CP Asymmetry

Trabelsi, L. Silva, 2006.04824

Lingfeng Li | CEPC Flavor WP Status

But only if ECAL is crystal

Time-Dependent CP Asymmetry

X. Li, M Ruan, M. Zhao, 2205.10565

Angle β_s measurement by timedependent $B_s \rightarrow J/\psi \phi \rightarrow \mu \mu KK$

See also R. Aleksan, L. Oliver, 2205.07823

Lingfeng Li | CEPC Flavor WP Status

Time-dependent measurement of B \rightarrow DK to give α_s and β_s , helpful to fix the value of angle γ

R. Aleksan, L. Oliver, E. Perez, 2107.02002 R. Aleksan, L. Oliver, E. Perez, 2107.05311

Potential Advantages?

> Asymmetry closer to LHCb instead of B factories Time resolution and PID Access to heavier b-hadrons

		7 Decays of b-hadrons into open or hidden charm hadrons	182
5 Measurements related to Unitarity Irlangle angles 64	5.5.2 Time-dependent Dalitz-plot analyses of $b \to c\overline{u}d$ decays	7.1 Decays of \overline{B}^0 mesons	183
5.1 Introduction $\dots \dots \dots$	5.6 Time-dependent <i>CP</i> asymmetries in $b \to c\bar{c}d$ transitions	7.1.1 Decays to a single open charm meson	183
5.2 Notations \ldots 66	5.6.1 Time-dependent CP asymmetries in B_s^0 decays mediated by $b \rightarrow c\bar{c}d$	7.1.2 Decays to two open charm mesons	100
5.2.1 CP asymmetries	transitions	7.1.2 Decays to two open charm mesons	190
5.2.2 Time-dependent CP asymmetries in decays to CP eigenstates 67	5.7 Time-dependent <i>CP</i> asymmetries in charmless $b \rightarrow q\bar{q}s$ transitions 94	7.1.3 Decays to charmonium states	194
5.2.3 Time-dependent distributions with non-zero decay width difference 69	5.7.1 Time dependent <i>CP</i> asymmetries: $h \rightarrow a\overline{as}$ decays to <i>CP</i> eigenstates 06	7.1.4 Decays to charm baryons	200
5.2.4 Time-dependent CP asymmetries in decays to vector-vector final states . [70]	5.7.2 Time-dependent Dalitz plot analyses: $B^0 \to K^+ K^- K^0$ and $B^0 \to \pi^+ \pi^- K_s^0$ [99]	7.1.5 Decays to XYZ states \ldots \ldots \ldots \ldots \ldots	201
5.2.5 Time-dependent asymmetries: self-conjugate multiparticle final states	5.7.3 Time-dependent analyses of $B^0 \to \phi K^0 \pi^0$	7.2 Decays of B^- mesons	204
5.2.6 Time-dependent <i>CP</i> asymptotics in decays to non- <i>CP</i> aircentates	5.7.4 Time-dependent CP asymmetries in $B^0_s \to K^+K^-$	7.2.1 Decays to a single open charm meson	204
5.2.6 Time-repetition in $D \rightarrow D^{(*)} K^{(*)}$ decoup	5.7.5 Time-dependent CP asymmetries in $B_s^0 \to \phi \phi$	7.2.2 Decays to two open charm mesons	209
5.2.7 Asymmetries in $D \to D^* K^*$ decays	5.8 Time-dependent <i>CP</i> asymmetries in $b \to q\bar{q}d$ transitions	7.2.3 Decays to charmonium states	212
5.5 Common inputs and uncertainty treatment	5.9 Time-dependent asymmetries in $b \to s\gamma$ transitions	7.2.4 Decays to charm baryons	217
5.4 Time-dependent asymmetries in $b \to ccs$ transitions	5.10 Time-dependent asymmetries in $b \to d\gamma$ transitions $\ldots \ldots \ldots$	7.2.5 Decays to other (XYZ) states	218
5.4.1 Time-dependent <i>CP</i> asymmetries in $b \to ccs$ decays to <i>CP</i> eigenstates . 184	5.11 Time-dependent <i>CP</i> asymmetries in $b \to u\overline{u}d$ transitions	7.2. D for (\overline{D}^0/D^-)	001
5.4.2 Time-dependent transversity analysis of $B^0 \to J/\psi K^{*0}$ decays	5.11.1 Constraints on $\alpha \equiv \phi_2$	7.3 Decays of admixtures of B/B mesons	221
5.4.3 Time-dependent <i>CP</i> asymmetries in $B^0 \to D^{*+}D^{*-}K_s^0$ decays	5.12 Time-dependent <i>CP</i> asymmetries in $b \to c\overline{u}d/u\overline{c}d$ transitions	7.3.1 Decays to two open charm mesons	221
5.4.4 Time-dependent analysis of B_s^o decays through the $b \to c\bar{c}s$ transition 88	5.13 Time-dependent <i>CP</i> asymmetries in $b \to c\overline{u}s/u\overline{c}s$ transitions	7.3.2 Decays to charmonium states	221
5.5 Time-dependent CP asymmetries in colour-suppressed $b \rightarrow c\overline{u}d$ transitions 89	5.13.1 Time-dependent CP asymmetries in $B^0 \to D^+ K_s^0 \pi^{\pm}$	7.3.3 Decays to other (XYZ) states	222
5.5.1 Time-dependent CP asymmetries: $b \to c\overline{u}d$ decays to CP eigenstates 89	5.13.2 Time-dependent <i>CP</i> asymmetries in $B_s^0 \to D_s^+ K^+$	7.4 Decays of \overline{B}_s^0 mesons	223
	5.14 Rates and asymmetries in $B \rightarrow D^{(\prime)}K^{(\prime)}$ decays	7.4.1 Decays to a single open charm meson	223
	5.14.1 D decays to CP eigenstates	7.4.2 Decays to two open charm mesons	225
	5.14.2 D decays to quasi-OP eigenstates	7.4.3 Decays to charmonium states	226
8 B decays to charmless final states 236	5.14.4 D decays to suppressed final states	7.4.4 Decays to charm harvons	228
8.1 Mesonic decays of B^0 and B^+ mesons	analysis)	7.5 Decays of B^- mesons	020
8.2 Baryonic decays of B^+ and B^0 mesons $\ldots \ldots 248$	5.14.5 D decays to multiparticle self-conjugate final states (model-independent	7.5 Decays of D_c mesons	223
8.3 Decays of b baryons	analysis)	7.5.2 Decays to a single open charm meson	223
8.4 Decays of B^0 mesons $D54$	5.14.6 D decays to multiparticle non-self-conjugate final states (model-independent	7.5.2 Decays to two open charm mesons	229
8.5 Radiative and leptonic decays of B^0 and B^+ mesons	analysis)	7.5.3 Decays to charmonium states	230
8.6 Charge asymmetries in b-hadron decays	5.14.7 Combinations of results on rates and asymmetries in $B \to D^{(*)} K^{(*)}$ de-	7.5.4 Decays to a B meson	232
8.7 Polarization measurements in <i>b</i> -hadron decays	cays to obtain constraints on $\gamma \equiv \phi_3$	7.6 Decays of <i>b</i> baryons	232
8.8 Decays of B^+ mesons	5.15 Summary of the constraints on the angles of the Unitarity Triangle 145	7.6.1 Decays to a single open charm meson	232
		7.6.2 Decays to charmonium states	232
		7.6.3 Decays to charm baryons	234

Lingfeng Li | CEPC Flavor WP Status

- ✤ We certainly want a CEPC version
- Need many more experiment and theory inputs
- Move on to the next phase

