CEPC EW physics: towards White Paper

Jiayin Gu (顾嘉荫)

Fudan University

CEPC Flavor Physics/New Physics/Detector Technology Workshop August 14, 2023

mainly based on an earlier draft of the EW white paper and the CEPC Snowmass report [2205.08553]

Jiayin Gu (顾嘉荫)

The current status of the CEPC EW white paper

An earlier draft (last updated in 2019) with outdated run scenarios

- Z-pole measurements
- W mass measurements (threshold and kinematic reconstruction)
- Oblique parameter fit
- SMEFT fit
- New physics implications (Natural SUSY)
- The CEPC Snowmass report [2205.08553]
 - Updated measurement inputs
 - Updated SMEFT fit
 - New physics implications (see the previous talk by Xuai)

• Z pole: $\sim 8 \, \mathrm{ab}^{-1}$? $\rightarrow 100 \, \mathrm{ab}^{-1}$

- Many measurements are dominated by systematics, but A_θ and A_τ from final state tau polarization measurements are significantly improved. (They were already considered in the earlier draft but were not official...)
- WW threshold: $3.2 \, \mathrm{ab}^{-1} \rightarrow 6 \, \mathrm{ab}^{-1}$
 - W mass: 1 MeV → 0.5 MeV (We also got more optimistic?)
- ▶ 240 GeV: $5.6 \, \text{ab}^{-1} \rightarrow 20 \, \text{ab}^{-1}$
 - Higgs and diboson ($e^+e^- \rightarrow WW$) measurements
- Top threshold run: no \rightarrow yes
 - The top mass measurement is an important input for EW fits!
 - (see Xiaohu's talk on Tuesday)

The measurement inputs CEPC Snowmass report [2205.08553]

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic	
Δm_Z	2.1 MeV [37–41]	$0.1 { m MeV} (0.005 { m MeV})$	${\cal Z}$ threshold	E_{beam}	
$\Delta\Gamma_Z$	2.3 MeV [37–41]	$0.025~{\rm MeV}~(0.005~{\rm MeV})$	${\cal Z}$ threshold	E_{beam}	
Δm_W	9 MeV [42–46]	$0.5 { m MeV} (0.35 { m MeV})$	WW threshold	E_{beam}	
$\Delta \Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}	
Δm_t	$0.76 {\rm ~GeV} [50]$	O(10) MeV ^a	$t\bar{t}$ threshold		
ΔA_e	$4.9\times 10^{-3} \ \ [\textbf{37, 51-55}]$	$1.5\times 10^{-5}~(1.5\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.	
ΔA_{μ}	0.015 [37 , 53]	$3.5\times 10^{-5}~(3.0\times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.	
ΔA_{τ}	$4.3\times 10^{-3} \ \ [\textbf{37}, \ \textbf{51}\textbf{-}\textbf{55}]$	$7.0\times 10^{-5}~(1.2\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model	
ΔA_b	0.02 [37, 56]	$20\times 10^{-5}~(3\times 10^{-5})$	Z pole	QCD effects	
ΔA_c	0.027 [37, 56]	$30\times 10^{-5}~(6\times 10^{-5})$	Z pole	QCD effects	
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity	
δR_b^0	0.003 [37, 57–61]	$0.0002~(5\times 10^{-6})$	${\cal Z}$ pole	gluon splitting	
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2\times 10^{-5})$	Z pole	gluon splitting	
δR_e^0	0.0012 [37-41]	$2\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam} and t channel	
δR^0_μ	0.002 [37-41]	$1\times 10^{-4}~(3\times 10^{-6})$	${\cal Z}$ pole	E_{beam}	
$\delta R_{ au}^0$	0.017 [37-41]	$1\times 10^{-4}~(3\times 10^{-6})$	${\cal Z}$ pole	E_{beam}	
δN_{ν}	0.0025 [37 , 66]	$2\times 10^{-4}~(3\times 10^{-5}$)	ZH run $(\nu\nu\gamma)$	Calo energy scale	

Jiayin Gu (顾嘉荫)

- Δ : absolute uncertainties, δ : relative uncertainties
- ► The constraints on A_e and A_τ mainly come from $e^+e^- \rightarrow \tau^+\tau^-$ with final state tau polarization measurements.
- A_{μ} , A_{b} and A_{c} are derived from the A^{FB} measurements and A_{e} .
 - Best way to present the results?

S & T parameters (earlier draft)

Jiayin Gu (顾嘉荫

Fudan University

S & T parameters (earlier draft)

▶ What's the impact of the *m*^t measurement?

Jiayin Gu (顾嘉荫)

C	$\begin{split} \chi &= -\frac{1}{2} \int_{\infty} F^{*} \\ &+ i \mathcal{F} \mathcal{D} \mathcal{J} + k_c \\ &+ \mathcal{J}_c \mathcal{G}_{ij} \mathcal{J}_j \mathcal{J} + k_c \\ &+ \mathbf{P}_{ij}\mathbf{f}^{T} - V(\mathcal{G}) \end{split}$	+
-		

	X^{3}		φ^4 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		(LL)(LL)		$(\bar{R}R)(\bar{R}R)$		(LL)(RR)
Qc	$f^{ABC}G^{A\nu}_{\nu}G^{S\mu}_{\nu}G^{C\mu}_{\nu}$	9,	$(\varphi^{\dagger}\varphi)^{3}$	Q.,	$(\varphi^{\dagger}\varphi)(\overline{l_{p}e_{r}}\varphi)$	Q_{V}	$(\bar{l}_{\rm f} \gamma_{\rm s} \bar{l}_{\rm r}) (\bar{l}_{\rm s} \gamma^{\mu} l_{\rm t})$	Q_{ee}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{e}_{\nu}\gamma^{*}e_{\ell})$	Q_{1c}	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\nu})(\tilde{e}_{\mu}\gamma^{\mu}e_{\mu})$
90	1 ABC GA GA GA GC	80	$(\varphi^{\dagger}\varphi) \Box (\varphi^{\dagger}\varphi)$	Que	$(\varphi^{\dagger}\varphi)(\bar{q}_{\mu}u_{\mu}\bar{\varphi})$	$Q_{ee}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{q}_{\nu}\gamma^{\mu}q_{\nu})$	Q_{in}	$(\hat{u}_{\mu}\gamma_{\mu}v_{\nu})(\hat{u}_{e}\gamma^{\mu}s_{i})$	Q_{he}	$(\tilde{l}_p \gamma_p \tilde{l}_r)(\hat{u}_s \gamma^{\mu} u_t)$
Qu	SIJKWDWJeWKE	Que	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$	Que	$(\varphi^{\dagger}\varphi)(\bar{q}_{s}d_{s}\varphi)$	$Q_{ii}^{(0)}$	$(\bar{q}_{\mu}\gamma_{\mu}\tau^{I}q_{\nu})(\bar{q}_{e}\gamma^{\mu}\tau^{I}q_{e})$	Q_{M}	$(\tilde{d}_{\mu}\gamma_{\mu}d_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$	Q_{1d}	$(\bar{l}_{\mu}\gamma_{\mu}l_{\tau})(\bar{d}_{e}\gamma^{\mu}d_{l})$
0.0	LIKWINW JOWKY					$Q_{lg}^{(1)}$	$(\tilde{l}_p \gamma_p l_r)(\tilde{q}_i \gamma^\mu q_i)$	Q_{ci}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{a}_{\mu}\gamma^{\mu}u_{\ell})$	$Q_{\ell^{\mathrm{H}}}$	$(\bar{q}_j \gamma_{j\ell} q_{\ell})(\bar{e}_i \gamma^{\mu} e_l)$
	12.2	-	d ² Y.c	-	±2.20	$Q_{iq}^{(2)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_i \gamma^\mu \tau^I q_i)$	Q_{et}	$(\bar{e}_y \gamma_p e_r)(\bar{d}_s \gamma^s d_b)$	$Q_{qu}^{(1)}$	$(\bar{q}_t \gamma_p q_r)(\bar{u}_s \gamma^\mu u_t)$
0	t at atm	0	d as s I wi	-000	118 10 111			$Q_{ud}^{(1)}$	$(\hat{u}_{\mu}\gamma_{\mu}u_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$	$Q_{qn}^{(k)}$	$(\bar{q}_{g}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{e}\gamma^{\mu}T^{A}u_{l})$
Q _i g	$\varphi^{i}\varphi G^{\alpha}_{\mu\nu}G^{\alpha\mu\nu}$	Qav	$(l_p \sigma^{\mu\nu} e_r) \tau^{\nu} \varphi W^{\prime}_{\mu\nu}$	$Q_{q\bar{q}}$	$(\varphi^{\dagger}(D_{\mu}\varphi)(l_{p}\gamma^{*}l_{r})$			22	$(\bar{a}_s \gamma_s T^A u_s)(\bar{d}_s \gamma^{\mu} T^A d_t)$	Q(1)	(40.00)(d. 1+d.)
$Q_{\mu\bar{\Omega}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_{\mu}\sigma^{\mu\nu}c_{\nu})\varphi B_{\mu\nu}$	$Q_{gl}^{(3)}$	$(\varphi^{\dagger}iD^{I}_{\mu}\varphi)(\bar{l}_{\rho}\tau^{I}\gamma^{\mu}l_{r})$					02	(a.n.T^a.)(d. v*T^d.)
Q_{qW}	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}\mu\nu$	Q_{uG}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^A u_{\tau})\widetilde{\varphi} G^A_{\mu\nu}$	Q_{qq}	$(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\vec{e}_{\mu} \gamma^{\mu} e_{\nu})$	(LR)	(RL) and (LR)(LR)	-	B-rio	ating	
$Q_{\sqrt{H}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I}\omega^{\nu}$	Q_{uW}	$(\bar{q}_{p}\sigma^{\mu\sigma}u_{r})\tau^{I}\widetilde{\varphi}W^{I}_{\mu\nu}$	$Q_{qq}^{(1)}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{q}_{\rho} \gamma^{\mu} q_{r})$	Que	$(Ee_i)(d_i a^i)$	an	5""" Eu [(de)	FOug	$[(q_{i}^{sj})^{T}Cl_{i}^{k}]$
9,0	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{vS}	$(q_p \sigma^{\mu\nu} u_r) \overline{\varphi} B_{\rho\nu}$	$Q_{ m eq}^{(3)}$	$(\varphi^{\dagger}i \overset{i}{D}{}^{I}_{\mu} \varphi)(q_{\nu}\tau^{I}\gamma^{\mu}q_{\nu})$	Q ⁽¹⁾	$(\phi_i^i v_r) e_{i0}(\phi_i^i d_i)$	0	50.57 E. ((g0)	Cell	$[(a_i)^T C a_i]$
$Q_{\mu\bar{\mu}}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu} B^{\mu\nu}$	Q_{AT}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}d_{r})\varphi G^{A}_{\mu\nu}$	$Q_{\varphi \pi}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{u}_{\rho} \gamma^{\mu} u_{\tau})$	Q ^{IN}	$\langle q_i^{i}T^{ii}v_r \rangle e_{ii} \langle q_i^{k}T^{ii}d_i \rangle$	Q(1)	2037 E 418 cm [(02	i)TCg	*] [(q2m) ⁷ C22]
Q_{qWB}	$\varphi^{\dagger}\tau^{J}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(q_p\sigma^{\mu\nu}d_r)\tau^J\varphiW^J_{\mu\nu}$	Q_{qd}	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\widetilde{d}_{p}\gamma^{*}d_{r})$	$Q_{logs}^{(0)}$	$(l_{\mu}^{i}c_{r})c_{\mu}(\hat{q}_{s}^{k}a_{t})$	$Q_{\rm HH}^{\rm IN}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{\dagger}\varepsilon)_{\mu}(\tau^{\dagger}\varepsilon)_{cm}$	[(q23)]	$Cq_{r}^{(h)}$ [($q_{r}^{(m)}$) ^T Cl_{r}^{m}]
Q.Ra	$\varphi^{l}\tau^{l}\varphi \widetilde{W}^{l}_{\mu\nu}B^{\mu\nu}$	Q_{d3}	$(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\nu})\varphi B_{\mu\nu}$	Que	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\hat{u}_{\mu}\gamma^{\mu}d_{\tau})$	$Q_{logu}^{(2)}$	$(\bar{\ell}_{p}^{i}\sigma_{\mu\nu}e_{\nu})e_{\mu}(q_{\mu}^{i}\sigma^{\mu\nu}u_{i})$	Qen	$\varepsilon^{\alpha\beta\gamma} [(d^a_\mu)^3$	Cu ³	$[(u_i^*)^T C v_i]$

- Write down all possible (non-redundant) dimension-6 operators ...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.
- A full global fit with all measurements to all operator coefficients?
 - ▶ We usually only need to deal with a subset of them, *e.g.* ~ 20-30 parameters for **Higgs and electroweak** measurements.
- Do a global fit and present the results with some fancy bar plots!

You can't really separate Higgs from the EW gauge bosons!

 $\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{H\ell}' = iH^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{He} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{e}_{R} \gamma^{\mu} e_{R} \end{array}$

(or the ones with quarks)

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

- $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}, \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
 - generate **aTGCs** $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
 - also generates *HVV* anomalous couplings such as hZ_μ∂_νZ^{μν}.

$e^+e^- ightarrow WW$ with Optimal Observables

- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
- What are optimal observables?

(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$rac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} \, g_i \,, \qquad c_{ij}^{-1} = \int d\Omega rac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

- Current work on an improved analysis with machine learning. (Shengdu Chai, JG, Lingfeng Li)
- A more realistic experimental analysis is needed!

Jiayin Gu (顾嘉荫)

- 28-parameter fit projected on Higgs couplings and anomalous triple gauge couplings.
- ► $\delta g_H^{ZZ} \approx \delta g_H^{WW}$ from theoretical constraints (gauge invariance & custodial symmetry) and EW measurements.
- ▶ Non-negligible improvement from the 360 GeV run.

SMEFT global fit (Vff couplings) (earlier draft)

precision reach on the Vff couplings from the full EFT fit

• U(2) symmetry imposed on first two generation quarks.

Jiayin Gu (顾嘉荫)

Fudan University

- 20-parameter fit (assuming flavor universality in gauge-fermion couplings).
- See next page for the operator basis.

$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} H^{2})^{2}$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW}=g^2 \mathcal{H} ^2 W^a_{\mu u} W^{a,\mu u}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB}=g^{\prime2} H ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{l}_L He_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W^{a u}_{\mu}W^{b}_{ u ho}W^{c ho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overleftarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger}_{\mu\nu} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_L \gamma^{\mu} \ell_L$
$\mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overrightarrow{D_{\mu}} H)^{2}$	$\mathcal{O}'_{H\ell} = iH^{\dagger}\sigma^{a}\widetilde{D_{\mu}}H\bar{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma^\mu_\ell \ell_L) (\bar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He} = i H^{\dagger} \overleftarrow{D_{\mu}} H \overline{e}_R \gamma^{\mu} e_R$
$\mathcal{O}_{Hq} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}^{\prime} = i H^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{q}_{L} \sigma^{a} \gamma^{\mu} q_{L}$	$\mathcal{O}_{Hd} = i H^{\dagger} \widetilde{D_{\mu}'} H \overline{d}_R \gamma^{\mu} d_R$

- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$) (used here)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Results from the recent snowmass SMEFT global fit study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

Jiayin Gu (顾嘉荫)

Fudan University

Impacts of (lack of) the Z-pole run

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

- Without good Z-pole measurements, the eeZh contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC Higgs measurements!
- The CEPC Z-pole measurements are!

Update measurement inputs (if any)

- Any updates to the numbers in CEPC Snowmass report [2205.08553] ?
- This is the most essential part!
- More measurements?
 - Top mass measurement
 - Diboson measurement ($e^+e^-
 ightarrow WW$)
 - $\blacktriangleright \ e^+e^- \to \gamma\gamma/Z\gamma/ZZ \dots$
 - ► ...
- More interpretations?
 - Overlap with the new physics white paper?
- Timeline/deadline?

backup slides

Jiayin Gu (顾嘉荫)

CEPC EW physics: towards White Paper

Fudan University