

中國科學院為能物加加完備 Institute of High Energy Physics Chinese Academy of Sciences

Prospects for $B_{(s)}^0 \to \pi^0 \pi^0$, $\eta \eta$ measurement and CKM angle α determination via $B \to \pi \pi$ modes at CEPC (Tera-Z) [JHEP12(2022)135]

<u>Yuexin Wang</u>, Sébastien, Olivier, Lingfeng Li, Manqi Ruan, Shanzhen Chen, Yongfeng Zhu

CEPC Workshop @ Fudan University, Aug. 14-18, 2023

Status of $B^0_{(s)} \to \pi^0 \pi^0$, $\eta \eta$

Experimental and theoretical branching ratios (in units of 10^{-6})

Channel	DATA	SCET [1]	QCDF	pQCD
$B^0 o \pi^0 \pi^0$	1.59 ± 0.26 [2]	$0.84 \pm 0.29 \pm 0.30 \pm 0.19$	$0.30\substack{+0.46 \\ -0.26}$	$0.24\substack{+0.09\\-0.07}$
$B^0_s \to \pi^0 \pi^0$	< 210 [3]	-	$0.13^{+0.05}_{-0.05} \ [10]$	$\begin{array}{c} 0.21\substack{+0.10\\-0.09} [5]\\ 0.28\substack{+0.08+0.04+0.01\\-0.07-0.05-0.00} [4]\end{array}$
$B^0 o \eta \eta$	< 1 [6]	$0.69 \pm 0.38 \pm 0.13 \pm 0.58$ $1.0 \pm 0.4 \pm 0.3 \pm 1.4$	$\begin{array}{c} 0.32\substack{+0.13+0.07\\-0.05-0.06} [7]\\ 0.16\substack{+0.03+0.43+0.09+0.10\\-0.03-0.18-0.03-0.05} [8]\end{array}$	0.067 [9]
$B_s^0 o \eta\eta$	< 1500 [3]	$7.1 \pm 6.4 \pm 0.2 \pm 0.8 \\ 6.4 \pm 6.3 \pm 0.1 \pm 0.7$	$10.9^{+6.3+5.7}_{-4.0-4.2}$ [10]	$10.4^{+4.9}_{-3.4}$ [5]

> Only $B^0 \to \pi^0 \pi^0$ has been observed experimentally

 $\succ B^0 \to \pi^0 \pi^0$

- > Puzzle: discrepancy between experimental and theoretical BR
- \succ Necessary channel to determine CKM angle α
- Charmless two-body hadronic B-meson decay
 - > experimentally clean
 - ➤ hadron physics, even new physics

Advantage of CEPC

Tera-Z factory

Massive various b-hadrons

 $\sim 10^{11} B^0 \& \sim 10^{10} B_s^0$

 \succ Larger boost of b-hadrons than Belle II \rightarrow more precise vertex reconstruction

➢ Lepton collider

Cleaner collision environment and much lower background level

Benefit neutral final states reconstruction

b-hadrons	Belle II	LHCb (300 fb^{-1})	Tera-Z
$B^0,ar{B}^0$	$5.4 imes 10^{10} (50 ext{ ab}^{-1} ext{ on } \Upsilon(4S))$	$3 imes 10^{13}$	$1.2 imes 10^{11}$
B^{\pm}	$5.7 imes 10^{10} (50 ext{ ab}^{-1} ext{ on } \Upsilon(4S))$	$3 imes 10^{13}$	$1.2 imes 10^{11}$
$B^0_s,ar{B}^0_s$	$6.0 imes 10^8 \ (5 \ { m ab}^{-1} \ { m on} \ \Upsilon(5S))$	$1 imes 10^{13}$	$3.1 imes10^{10}$
B_c^{\pm}	-	$1 imes 10^{11}$	1.8×10^8
$\Lambda_b^0,ar{\Lambda}_b^0$	-	$2 imes 10^{13}$	$2.5 imes10^{10}$

Key detector performance

- Fast simulation strategy
- b-jet tagging
 - → CEPC baseline: $\varepsilon \sim 80\%$, $p \sim 90\%$
- ECAL performance
 - ▶ Only focus on di-photon decay of π^0 and η
 - → B mass resolution: $\sigma_{m_B} \sim 30 \text{MeV} \rightarrow 3\sigma$ separation between B^0 and B_s^0
 - ► EM resolution: improve the baseline $17\%/\sqrt{E} \oplus 1\%$ to $3\%/\sqrt{E} \oplus 0.3\%$
 - ➢ e.g. Homogeneous crystal ECAL design of CEPC 4th concept detector

Event selection of $B^0_{(s)} \to \pi^0 \pi^0$

- \succ Cut-based event selection (on energy and angular distributions of π^0 pairs)
 - Signal efficiency $\sim 40\%$
 - ➢ Background suppression ∼ 3 orders of magnitude
- ▷ Optimize mass window → minimize relative accuracy $\sqrt{S + B}/S$
 - $\succ \sim 7.5 \times 10^4 B^0 \rightarrow \pi^0 \pi^0$, relative accuracy $\sim 0.4\%$
 - $\geq \sim 2.5 \times 10^3 B_s^0 \rightarrow \pi^0 \pi^0$, relative accuracy ~ 4.0%

Event selection of $B^0_{(s)} \rightarrow \eta \eta$

- \succ Cut-based event selection (on energy and angular distributions of η pairs)
 - Signal efficiency $\sim 45\%$
 - Background suppression ~ 5 orders of magnitude
- → Optimize mass window → minimize relative accuracy $\sqrt{S + B}/S$
 - $\succ \sim 700 B^0 \rightarrow \eta \eta$, relative accuracy $\sim 17\%$
 - $\succ \sim 2 \times 10^4 B_s^0 \rightarrow \eta \eta$, relative accuracy $\sim 0.9\%$

Other effects

 \blacktriangleright Central region ~5-10%, Forward region ~25%, ~80% can be recovered

 \blacktriangleright Average conversion rate ~3% (each photon)

 \blacktriangleright Photon separation (especially di-photon merging)

> Only energetic π^0 suffers

 $\rightarrow 12\%$ efficiency loss of $B^0_{(s)} \rightarrow \pi^0 \pi^0$, $\eta \eta$

> 2cm \rightarrow 80% separation efficiency (CEPC baseline, 5GeV γ)

 \geq 2cm \rightarrow 10 mrad angular separation (ECAL R_{inner}=2m)

Photon conversion

0L

20

40

Minimum θ_{yy} [mrad]

60

100

80

Determination of CKM angle α

CKM matrix: quark mixing, CP violation
 B⁰ decay related triangle relation

$$V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0,$$

Figure 12.1: Sketch of the unitarity triangle.

$$eta = \phi_1 = rg\left(-rac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}
ight),$$
 $lpha = \phi_2 = rg\left(-rac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}
ight),$
 $\gamma = \phi_3 = rg\left(-rac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}
ight).$

- $\succ \alpha$ determination via weak transition b \rightarrow uud
 - Commonly used decay modes
 - $\succ B \to \rho \rho, \pi \pi, \rho \pi$
 - Both tree and penguin diagrams
 - Penguin contribution is non-negligible
 - Using isospin conservation to deal with penguin pollution

Determination of CKM angle α

Ref. https://inspirehep.net/literature/1598487

Isospin analysis of $B o \pi\pi$: $B^0 o \pi^0\pi^0$, $\pi^+\pi^-$, $B^+ o \pi^+\pi^0$

- ➤ 3 amplitudes can be parameterized by 12 real parameters (complex tree and penguin contributions)
- ➢ 6 parameters can be further eliminated by:
 - ➤ 2 complex isospin relations (4 real constraints)
 - → absence of penguin contribution to $B^+ \rightarrow \pi^+ \pi^0$ (2 real constraints)
- Remain only 6 degrees of freedom!
- From experimental side
 - ➢ 6 observables are available to constrain the 6D parameter space
 - $\succ \mathcal{B}^{ij}$: branching ratio
 - $\succ C^{ij}$: direct CP asymmetry in decay
 - $\succ S^{ij}: B^0 \overline{B}^0$ mixing induced CP asymmetry

$$\begin{aligned} \frac{1}{\tau_{B^{i+j}}} \mathcal{B}^{ij} &= \frac{|A^{ij}|^2 + |\bar{A}^{ij}|^2}{2}, \\ \mathcal{C}^{ij} &= \frac{|A^{ij}|^2 - |\bar{A}^{ij}|^2}{|A^{ij}|^2 + |\bar{A}^{ij}|^2}, \\ \mathcal{S}^{ij} &= \frac{2\mathcal{I}m(\bar{A}^{ij}A^{ij*})}{|A^{ij}|^2 + |\bar{A}^{ij}|^2}, \end{aligned}$$

$$A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}$$
$$\bar{A}^{-0} = \frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00}$$

1

Current input observables to determine α

Parameters	World average [30]	Belle (0.8 ab^{-1})	Belle II (50 ab^{-1}) [18]	LHCb
B^{00} ($\times 10^{-6}$)	1.59	1.31 [<mark>31</mark>]	1.31	
$\mathcal{B}^{(\times 10^{-5})}$	$\pm \ 0.26 \ (16\%)$	$\pm \ 0.19 \ (14.5\%) \ \pm \ 0.19$	$\pm \ 0.03 \ (2.3\%) \ \pm \ 0.03$	-
\mathbf{R}^{+0} (×10 ⁻⁶)	5.5	5.86 [59]	5.86	
$\mathcal{D}^{(\times 10^{-4})}$	$\pm \ 0.4 \ (7.3\%)$	$\pm \ 0.26 \ (4.4\%) \pm \ 0.38$	$\pm \ 0.03 \ (0.6\%) \ \pm \ 0.09$	-
B^{+-} ($>10^{-6}$)	5.12	5.04 [59]	5.04	
$D^{+}(\times 10^{-4})$	$\pm \ 0.19 \ (3.7\%)$	$\pm \ 0.21 \ (4.2\%) \pm \ 0.18$	$\pm \ 0.03 \ (0.6\%) \ \pm \ 0.08$	-
C^{00}	-0.33	-0.14 [31]	-0.14	
C_{CP}	± 0.22	$\pm \ 0.36 \pm 0.10$	$\pm \ 0.03 \pm 0.01$	-
				$-0.34 \pm 0.06 \pm 0.01$ [61]
				$(7 \& 8 \text{ TeV}, 3.0 \text{ fb}^{-1})$
C^{+-}	-0.314	-0.33 [<mark>60</mark>]	-0.33	$-0.311 \pm 0.045 \pm 0.015 \ \textbf{[62]}$
C_{CP}	± 0.030	$\pm \ 0.06 \pm 0.03$	\pm 0.01 \pm 0.03	$(13 \text{ TeV}, 1.9 \text{ fb}^{-1})$
				± 0.004 (stat. only) [19]
				$(\text{Run } 1-6, 300 \text{fb}^{-1})$
				$-0.63 \pm 0.05 \pm 0.01$ [61]
				$(7 \& 8 \text{ TeV}, 3.0 \text{ fb}^{-1})$
S_{CP}^{+-}	-0.670	-0.64 [60]	-0.64	$-0.706 \pm 0.042 \pm 0.013$ [62]
	± 0.030	\pm 0.08 \pm 0.03	\pm 0.01 \pm 0.01	$(13 \text{ TeV}, 1.9 \text{ fb}^{-1})$
				\pm 0.004 (stat. only) [19]
				$(\text{Run } 1-6, 300 \text{fb}^{-1})$

> No S_{CP}^{00} (mixing induced CP asymmetry) in current data

- \blacktriangleright Lack of vertex information in $B^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$ to perform time-dependent measurement
- \succ Lead to mirror solutions in α

Complementarity between Z- and B-factory

> Time-integrated CP measurements at Z- and B-factories are quite different but complementary!

- ≻ Z-factory (B from bb pairs, incoherently), $t \in [0, \infty)$, $a_{CP} = C + xS$.
- \succ B-factory (Υ → *BB*, coherently), *t* → Δ*t* ∈ (−∞, +∞), *a*_{*CP*} = *C*.

> An alternative way to extract S_{CP}^{00} by combining Z- and B-factories

α determination via $B \rightarrow \pi \pi$

Extract α from B → π π modes
 3 channels: B⁰ → π⁰π⁰, π⁺π⁻, B⁺ → π⁺π⁰
 Input observables: BR & CP asymmetries
 Uncertainty estimation (statistical only)

$$\frac{\sigma_{\mathcal{B}}}{\mathcal{B}} \simeq \frac{1}{\sqrt{N_{\text{eff}}}} \equiv \frac{1}{\sqrt{\text{Yield} \times \epsilon \times p}}$$
$$\sigma_{a_{CP}^{00}} \simeq \frac{1}{(1 - 2\chi_d)\sqrt{N_{\text{eff}} \times \epsilon_{\text{eff}}}} \text{ (time-integrated)}$$

$$\sigma_{S_{CP}^{+-}} \simeq \sigma_{C_{CP}^{+-}} \simeq \frac{1}{\sqrt{N_{\rm eff} \times \epsilon_{\rm eff}}} \ ({\rm time-dependent})$$

≻ Key parameters in CP measurements:

- → b-charge tagging $(B^0 \text{ or } \overline{B}^0)$:
 - \succ tagging efficiency, ϵ_{tag}
 - \succ wrong tagging fraction, ω
 - \succ effective tagging efficiency (power), ϵ_{eff}

> we use
$$\epsilon_{\text{eff}} \equiv \epsilon_{\text{tag}} (1 - 2\omega)^2 \in [15, 25]\%$$

 $\geq B^0 - \overline{B}^0$ mixing: $\chi_d = 0.1858 \pm 0.0011$

Impact on CKM angle α determination

- CKM global fit (by Sébastien & Olivier, CKMfitter group)
 - Uncertainties rescaled to Tera-Z projections
- ► Scenario 1: only improve $B^0 \to \pi^0 \pi^0$ to Tera-Z projection
 - > Main improvement comes from a_{CP}^{00}
 - > Some mirror solutions removed with $a_{CP}^{00} = C + xS$ at Tera-Z
 - Final precision of α : 2~3° (with additional C_{WA}^{00} from B-factories)

WA : $\alpha(\pi\pi) = (93.0 \pm 13.6)^{\circ} \rightarrow \text{Tera-}Z \text{ scenario } 1 : \alpha(\pi\pi) = (82.6^{+3.5}_{-2.5} \cup 92.0^{+1.4}_{-2.0})^{\circ}$

Impact on CKM angle α determination

- Scenario 2: improve all three $B \rightarrow \pi\pi$ modes to Tera-Z projection
 - $\succ a_{CP}^{00}$ and C_{CP}^{00} are central in this improvement
 - > Final precision of α :

Tera-Z scenario
$$2: \alpha(\pi\pi) = (91.8 \pm 0.4)^{\circ}$$

- > Even better than:
 - > Current world average combining $\rho\rho$, $\pi\pi$, $\rho\pi$ data ~ 1.4°
 - > Theoretical systematic uncertainties (isospin related) ~ 1-2°, need reevaluation

Other prospects for α measurement

> Direct extraction of $S_{\pi\pi}^{00}$ via time-dependent analysis of $B^0 \to \pi^0 \pi^0$

≻ Using $\pi^0 \rightarrow e^+e^-\gamma$ Dalitz decay or photon conversion events

➤ CEPC advantage

≻ Larger boost of B meson

Decent vertex reconstruction

> B decay lifetime resolution ~15 fs

- $> B \rightarrow \rho \rho$, more precise than $B \rightarrow \pi \pi$ modes
 - \succ Larger branching ratios than $B \rightarrow \pi \pi$
 - $> B^0 \rightarrow \rho^0 \rho^0$ enjoys the charged final state $\rho^0 \rightarrow \pi^+ \pi^-$
 - Much better charged particle reconstruction performance than neutral particle

 $\succ S_{\rho\rho}^{00}$ is available to reduce the mirror solutions in α

Summary

- > Neutral charmless B-meson decays: $B_{(s)}^0 \rightarrow \pi^0 \pi^0$, $\eta \eta$
 - ➢ Fast simulation: key detector performance modeling
 - > CEPC baseline b-tagging: $\varepsilon \sim 80\%$, $p \sim 90\%$
 - > EM resolution: $3\%/\sqrt{E} \oplus 0.3\% (\sigma_{m_B} \sim 30 \text{MeV})$
 - > Other effects: photon conversion & separation
 - Anticipated accuracy at Tera-Z
- ≻ CKM angle *α* determination using $B \rightarrow ππ$ mode
 - Complementarity between Z- and B-factory in
 - \triangleright extracting S_{CP}^{00}
 - \succ reducing mirror solutions in α
 - → Anticipated precisions of $B \rightarrow \pi \pi$ BR & CP asymmetries
 - CKM global fit results
 - → Only improve $B^0 \to \pi^0 \pi^0$: $\sigma(\alpha) \approx 2 \sim 3^\circ$
 - → Improve all three $B \to \pi \pi$: $\sigma(\alpha) \approx 0.4^{\circ}$
 - > Prospects
 - Reevaluation of theoretical systematic uncertainties
 - > Direct extraction of $S_{\pi\pi}^{00}$ via π^0 Dalitz decay or photon conversion
 - → More precise measurement of $B \rightarrow \rho \rho$

Channels	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$	$B^0 o \eta\eta$	$B_s^0 \to \eta \eta$
Signal yield	60000	2000	600	17500
Accuracy	0.45%	4.5%	18%	0.95%

Parameters	Tera- Z Projection
$\sigma_{\mathcal{B}^{00}}/\mathcal{B}^{00}$	0.45%
$\sigma_{\mathcal{B}^{+0}}/\mathcal{B}^{+0}$	0.19%
$\sigma_{\mathcal{B}^{+-}}/\mathcal{B}^{+-}$	0.18%
$\sigma_{a^{00}_{CP}}$	$\pm~(0.014{-}0.018)$
$\sigma_{C_{CP}^{+-}}$	$\pm~(0.004{-}0.005)$
$\sigma_{S_{CP}^{+-}}$	$\pm~(0.004{-}0.005)$

Thank you for your attention!

Reconstruction performance of π^0 and η

Inclusive π⁰ and η in Z → qq̄ (91.2 GeV)
N_{π⁰} ≫ N_n

> prioritize π^0 reconstruction, use remaining γ to reconstruct η

 $\succ \text{ Optimal } \epsilon \times p \text{ vs } E_{\pi^0,\eta}$ $\gg 90\% \text{ for } E_{\pi^0} > 10 \text{ GeV}$ $\gg 60\% \text{ for } E_{\eta} > 10 \text{ GeV}$

Background components of $B^0_{(s)} \to \pi^0 \pi^0$

Dependence on ECAL performance

Estimation of other two $B \rightarrow \pi\pi$ modes

 $> B^0 \rightarrow \pi^+\pi^-$ (MCTruth analysis) CEPC baseline b-tagging σ_{m_n} = 5 MeV Data \blacktriangleright E tarck > 1 GeV 10 \succ E total > 20 GeV $\geq \theta < 30^{\circ}$ 10 Events / 5 MeV \blacktriangleright |Vertex - IP| < 100 μ m Combinatorial Bkg 10⁵ ⊧ \succ Track momentum resolution ~0.1% $> B^+ \rightarrow \pi^+ \pi^0$ (Just a guesswork) 10⁴ ➤ Anticipated performance in between 00 and +- 10^{3} Rough estimation using "efficiency & purity" 10^{2} $\frac{\sigma_{\mathcal{B}}}{\mathcal{B}} \simeq \frac{1}{\sqrt{N_{\text{off}}}} \equiv \frac{1}{\sqrt{\text{Yield} \times \epsilon \times p}}$ 5.3 5.1 5.2 5.4

Channel	Branching ratio	Yield	Efficiency	Purity		- 1B
Channel	${\cal B}~(imes 10^{-6})$	at Tera- $\!Z$	ϵ	p	$\epsilon \times p$	0B/D
$B^0 o \pi^0 \pi^0$	1.59	$1.9 imes10^5$	32%	80%	25%	0.45%
$B^+ o \pi^+ \pi^0$	5.50	$6.6 imes 10^5$	50%	$\gtrsim 85\%$	43%	0.19%
$B^0 \to \pi^+\pi^-$	5.12	$6.1 imes 10^5$	55%	$\gtrsim 95\%$	52%	0.18%

5.5

m_{π⁺π⁻} [GeV]

CP asymmetries of $B \rightarrow \pi \pi$

Uncertainty estimation (only statistical)

$$\sigma_{a_{CP}^{00}} \simeq \frac{1}{(1 - 2\chi_d)\sqrt{N_{\text{eff}} \times \epsilon_{\text{eff}}}} \text{ (time-integrated)}$$

$$\sigma_{S_{CP}^{+-}} \simeq \sigma_{C_{CP}^{+-}} \simeq \frac{1}{\sqrt{N_{\text{eff}} \times \epsilon_{\text{eff}}}} \text{ (time-dependent)}$$

b-charge tagging (B⁰ or B
⁰):
▷ effective tagging efficiency (power), ε_{eff}
▷ ε_{eff} ≡ ε_{tag}(1 - 2ω)² ∈ [15,25]%
▷ tagging efficiency, ε_{tag}
▷ wrong tag fraction, ω

 $> B^0 - \overline{B}^0$ mixing: $\chi_d = 0.1858 \pm 0.0011$

Parameters	Tera- Z Projection
$\sigma_{\mathcal{B}^{00}}/\mathcal{B}^{00}$	0.45%
$\sigma_{\mathcal{B}^{+0}}/\mathcal{B}^{+0}$	0.19%
$\sigma_{\mathcal{B}^{+-}}/\mathcal{B}^{+-}$	0.18%
$\sigma_{a^{00}_{CP}}$	\pm (0.014–0.018)
$\sigma_{C_{CP}^{+-}}$	\pm (0.004–0.005)
$\sigma_{S^{+-}_{CP}}$	\pm (0.004–0.005)

CKM global fit

by Sébastien & Olivier (CKMfitter group)

- Uncertainties rescaled to the Tera-Z projections
- The choice of central value
 - $\geq a_{CP}^{00}$ and S_{CP}^{00} , current predictions of the CKM global fit
 - \succ Others, keep to the W.A.

b-charge tagging (jet charge measurement)

Figure 3.1: Effective tagging efficiency of (left) different HEP experiments and (right) LHCb flavour tagging algorithms [40]. The white lines indicate contours of constant tagging power.

b-charge tagging (jet charge measurement)

- b-charge tagging performance:
 - \succ wrong tag fraction, ω
 - \succ tagging efficiency, ϵ_{tag}
 - > effective tagging efficiency (power), ϵ_{eff}

$$\epsilon_{eff} = \epsilon_{tag} (1 - 2\omega)^2$$

- ➢ b-charge tagging at CEPC
 - Jet charge measurement at MCTruth level (by Hanhua)
 - ➢ infer b-charge by leading charged particles
 - $\succ \omega \sim 35\%, \epsilon_{eff} \sim 10\%$
 - \blacktriangleright Dedicated b-charge tagging algorithm for $B_s \rightarrow J/\psi\phi$ (by Mingrui)
 - > potential to improve $\omega \sim 25\%$, $\epsilon_{eff} \sim 20\%$

$$A_{CP}^{Measured} = \frac{[\bar{N}(1-\omega) + N\omega] - [\bar{N}\omega + N(1-\omega)]}{\bar{N} + N}$$
$$= (1-2\omega)\frac{\bar{N} - N}{\bar{N} + N} = (1-2\omega)A_{CP}^{Truth}$$

Time-dependent CP asymmetry of $B^0 \rightarrow \pi^0 \pi^0$: $S^{00}_{\pi\pi}$

- \triangleright Extra constraint of $S_{\pi\pi}^{00}$ can reduce the two-fold ambiguity on the solutions of α in [75, 105]°
- Time-dependent analysis need vertex information
 - $ightarrow \pi^0 \rightarrow e^+ e^- \gamma$ Dalitz decay or photon conversion events
 - ➤ Belle II: 147 Dalitz events & 124 photon conversion events

➤ CEPC advantage

- Larger boost of B meson
- Decent vertex reconstruction
- \triangleright B decay lifetime resolution ~ 15 fs

More precise determination of α using $B \rightarrow \rho \rho$

- \succ More precise than $B \rightarrow \pi \pi$ modes
 - \succ Larger branching ratios than $B \rightarrow \pi \pi$
 - $> B^0 \rightarrow \rho^0 \rho^0$ enjoys the charged final state $\rho^0 \rightarrow \pi^+ \pi^-$
 - > Much better charged particle reconstruction performance than neutral particle
 - $> S_{\rho\rho}^{00}$ is accessible to reduce the ambiguity solutions

Table 4 World averages for the relevant experimental observables in the $B \rightarrow \rho^i \rho^j$ modes: branching fraction $\mathcal{B}_{\rho\rho}^{ij}$, fraction of longitudinal polarisation f_L^{ij} , time-integrated *CP* asymmetry $\mathcal{C}_{\rho\rho}^{ij}$, time-dependent asymmetry $\mathcal{S}_{\rho\rho}^{ij}$ and correlation (ρ)

Observable	World average
$\mathcal{B}_{\rho\rho}^{+-} \times f_L^{+-} (\times 10^6)$	$(27.76 \pm 1.84) \times (0.990 \pm 0.020)$
$\mathcal{B}_{\rho\rho}^{+0} \times f_L^{+0} \; (\times 10^6)$	$(24.9 \pm 1.9) \times (0.950 \pm 0.016)$
$\mathcal{B}^{00}_{\rho\rho} \times f^{00}_L \; (\times 10^6)$	$(0.93 \pm 0.14) \times (0.71 \pm 0.06)$
$\mathcal{C}^{+-}_{ ho_L ho_L ho_L}$	-0.00 ± 0.09
$\mathcal{S}^{+-}_{ ho_L ho_L}$	-0.15 ± 0.13
$ ho(C^{+-}_{ ho_L ho_L},S^{+-}_{ ho_L ho_L})$	+0.0002
${\cal C}^{00}_{ ho_L ho_L ho_L}$	0.2 ± 0.9
${\cal S}^{00}_{ ho_L ho_L}$	0.3 ± 0.7

Belle II

PTEP 2019, 123C01

Fig. 113. Projections of the fit results for candidates reconstructed as $B^0 \to \pi^0 (\to \gamma \gamma) \pi^0 (\to \gamma \gamma)$. The projections for one example pseudo-experiment are shown onto $M_{\rm bc}$ (left) and ΔE (right). Points with error bars represent the toy sample. The full fit results are shown by the solid blue curves. Contributions from signal, generic $B\bar{B}$ events, continuum background, and background from wrongly reconstructed signal events are shown by the long dashed green, short dashed red, dash-dotted blue, and dotted orange curves, respectively. The input values used for this pseudo-experiment are $A_{\pi^0\pi^0} = 0.34$ and $S_{\pi^0\pi^0} = 0.65$.

 $B\bar{B}$ background Sources of background from $B\bar{B}$ events are studied with a 4 ab^{-1} MC sample. The largest contribution comes from $B^+ \to \rho^+ (\to \pi^+ \pi^0) \pi^0$ decays, where the π^+ is lost. Events where the remaining π^0 pair decays into four photons which arrive at the ECL are the main $B\bar{B}$ background for $B^0 \to \pi^0_{\gamma\gamma} \pi^0_{\gamma\gamma}$ candidates. Those events which contain a converted photon or a Dalitz π^0 are the main background $B\bar{B}$ source for $B^0 \to \pi^0_{dal} \pi^0_{\gamma\gamma}$ candidates. This background peaks at the same value of M_{bc} , but is shifted in ΔE towards negative values due to the missing π^+ .

Input values		Time-dependent		Tin	Time-integrated	
$A_{\pi^0\pi^0}$	$S_{\pi^0\pi^0}$	$\Delta A_{\pi^0\pi^0}$	$\Delta S_{\pi^0\pi^0}$	$\Delta A_{\pi^0\pi^0}$	$\Delta \mathcal{B}_{\pi^0\pi^0}/\mathcal{B}_{\pi^0\pi^0}$ [%]	
0.34 [<mark>650</mark>]	0.65 [650]	0.22	0.28	0.03	2.2	
0.43 [88]	0.79	0.23	0.29	0.03	2.2	
0.14 [712]	0.83	0.21	0.26	0.03	2.4	
0.14 [712]	0.40	0.20	0.29	0.03	2.3	
0.14 [712]	-0.61	0.22	0.27	0.03	2.3	
0.14 [712]	-0.94	0.22	0.28	0.03	2.4	

Table 90. Statistical uncertainties $\Delta A_{\pi^0\pi^0}$, $\Delta S_{\pi^0\pi^0}$, and $\Delta B_{\pi^0\pi^0}/B_{\pi^0\pi^0}$ for different input values of $A_{\pi^0\pi^0}$ and $S_{\pi^0\pi^0}$ used for the generation of signal MC.

Table 91. Branching fractions and CP asymmetry parameters entering in the isospin analysis of the $B \rightarrow \pi \pi$ system: Belle measurements at 0.8 ab⁻¹ together with the expected Belle II sensitivity at 50 ab⁻¹.

	Value	0.8 ab^{-1}	$50 ab^{-1}$
$\overline{\mathcal{B}_{\pi^+\pi^-}} \; [10^{-6}]$	5.04	$\pm 0.21 \pm 0.18$ [727]	$\pm 0.03 \pm 0.08$
$\mathcal{B}_{\pi^{0}\pi^{0}}$ [10 ⁻⁶]	1.31	$\pm 0.19 \pm 0.19$ [712]	$\pm 0.03 \pm 0.03$
${\cal B}_{\pi^+\pi^0}~[10^{-6}]$	5.86	$\pm 0.26 \pm 0.38$ [727]	$\pm 0.03 \pm 0.09$
$A_{\pi^+\pi^-}$	0.33	$\pm 0.06 \pm 0.03$ [728]	$\pm 0.01 \pm 0.03$
$S_{\pi^+\pi^-}$	-0.64	$\pm 0.08 \pm 0.03$ [728]	$\pm 0.01 \pm 0.01$
$A_{\pi^0\pi^0}$	0.14	$\pm 0.36 \pm 0.10$ [712]	$\pm 0.03 \pm 0.01$

Fig. 116. Scan of the confidence for ϕ_2 performing isospin analysis of the $B \to \pi \pi$ system. (Left): The black solid line shows the result of the scan using data from Belle measurements (see Table 91). The blue shaded area in both plots shows the projection for Belle II. (Right): Results of the scan adding the $S_{\pi^0\pi^0}$ constraint. Each line shows the result for a different $S_{\pi^0\pi^0}$ value. The dotted horizontal lines correspond to 1σ .

Fig. 117. Scan of the confidence for ϕ_2 performing isospin analysis of the $B \to \pi \pi$ system. The blue shaded area in both plots shows the projection of the Belle measurements (see Fig. 116) for Belle II. Results of the scan with additional $S_{\pi^0\pi^0}$ constraints are shown by dashed lines. Each line correspond to different input $S_{\pi^0\pi^0}$ values. The red long dashed line on the left figure shows the result for $S_{\pi^0\pi^0} = 0.83$. The dotted horizontal line correspond to 1 σ .

B⁰→π ^₀ π ^₀	Final state	Total in theory	In acceptance	Selected	Efficiency	Purity	Relative accuracy
	ππ	195692	-	-	-	-	-
Torra 7	$\pi_{\gamma\gamma}\pi_{\gamma\gamma}$	191113*0.65 = 124223	-	75859 49689	0.4	0.8 0.72	0.4% 0.5%
Iera-Z	π _{dal} π _{γγ}	4579	-	?	?		
	$\pi_{\gamma c \gamma} \pi_{\gamma \gamma}$	191113*0.2 = 38222	-	?	?		
Belle II	ππ	103000	-	-	-	-	-
	$\pi_{\gamma\gamma}\pi_{\gamma\gamma}$	100590 - 9270 = 91320	78486	15068	0.192	0.158	2%
	π _{dal} π _{γγ}	2410	2060	147	0.072	0.170	
	$\pi_{\gamma c \gamma} \pi_{\gamma \gamma}$	100590*0.09 = 9270	3090	124	0.042	0.176	

 $\pi^0_{\gamma\gamma}$ are used for the time-integrated CP violation study. There is no event overlap between events with B^0_{sig} candidates reconstructed from two $\pi^0_{\gamma\gamma}$ and events containing Dalitz decays or converted photons.

(a) 2D energy spectrum of π^0 pairs in $B^0 \to \pi^0 \pi^0$ (left), $B_s^0 \to \pi^0 \pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

(b) Correlation between $E_{\pi^0\pi^0}$ and $\theta_{\pi^0\pi^0}$ in $B^0 \to \pi^0\pi^0$ (left), $B_s^0 \to \pi^0\pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

Dependence of B mass resolution on detector performance

- CEPC baseline single photon angular resolution ~1mrad/√E
- ECAL energy resolution dominates the contribution when $\sigma_{\theta} < \frac{1 \text{mrad}}{\sqrt{E}}$
- The following analysis only takes ECAL energy resolution into account
- $\sigma_{mB} \sim 30$ MeV requires ECAL energy resolution $\sim 3\%/\sqrt{E \oplus 0.3\%}$

EM Energy Resolution

From a historical perspective

The performance now measured in electron beams with final prototypes shows that we are below 2% energy resolution at 1 GeV and near to 5% at 100 MeV.

Belle II ECAL

The intrisic energy resolution of the calorimeter, as measured in a prototype [3], can be approximated as:

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{0.066\%}{E}\right)^2 + \left(\frac{0.81\%}{\sqrt[4]{E}}\right)^2 + (1.34\%)^2},\tag{9.1}$$

where E is in GeV and the first term represents the electronics noise contribution.

3.5. Electromagnetic calorimeter (ECL)

The electromagnetic calorimeter is used to detect gamma rays as well as to identify electrons, i.e. separate electrons from hadrons, in particular pions. It is a highly segmented array of thallium-doped caesium iodide CsI(Tl) crystals assembled in a projective geometry (Fig. 3). All three detector regions, the barrel as well as the forward and backward endcaps, are instrumented with a total of 8736 crystals, covering about 90% of the solid angle in the centre-of-mass system. The CsI(Tl) crystals, preamplifiers, and support structures have been reused from Belle, whereas the readout electronics and reconstruction software have been upgraded. In the Belle experiment, the energy resolution observed with the same calorimeter was $\sigma_E/E = 4\%$ at 100 MeV, 1.6% at 8 GeV, and the angular resolution was 13 mrad (3 mrad) at low (high) energies; π^0 mass resolution was 4.5 MeV/ c^2 [2]; in the absence of background a very similar performance would also be expected for Belle II.