Prospect for Measurement of CP-violation phase ϕ_s study in the $B_s \rightarrow J/\psi\phi$ channel at future Z factories

X.Li¹, M.Ruan², Mingrui Zhao¹³ base on the work arxiv:2205.10565 Date: 08/14/23

¹China Institute of Atomic Energy ²Institute for High Energy Physics ³Niels Bohr Institute, Copenhagen University *CEPC* 味物理-新物理和相关探测技术研讨会

- 1. Introduction
- 2. Prospect for measurement of CPV observables
- 3. Summary

○ CKM parameter:

 In neutral B meson decays to a final state the interference between the amplitude for the direct decay and the amplitude for decay after oscillation, leads to a time-dependent CP-violating asymmetry between the decay time distributions of B and anti-B mesons.

•
$$\phi_s = -arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$$

- \circ SM: small CPV phase- ϕ_s
- $\circ~$ Contributions from physics beyond the SM could lead to much larger values of $\phi_s.$

\bigcirc B_s decay parameters:

- $\Delta\Gamma_s \equiv \Gamma_L \Gamma_H, \Gamma_s \equiv (\Gamma_L + \Gamma_H)/2.$
- Able to be calculated with heavy quark expansion (HEQ) theory.

Similar study by R. Aleksan et al. :arxiv:2107.02002, arxiv:2107.05311

Measurement of ϕ_s ($\Delta\Gamma$, Γ_s) in experiments

Extract the observables $\phi_s, \Gamma_s, \Delta \Gamma_s$ from the time dependent angular distribution.

$$\frac{d^4\Gamma(B_s \to J/\psi\phi)}{dtd\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega),$$

where

$$h_k(t|B_s) = N_k e^{-\Gamma_s t} \left[a_k \cosh(\frac{1}{2}\Delta\Gamma_s t) + b_k \sinh(\frac{1}{2}\Delta\Gamma_s t) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$
$$h_k(t|\bar{B}_s) = N_k e^{-\Gamma_s t} \left[a_k \cosh(\frac{1}{2}\Delta\Gamma_s t) + b_k \sinh(\frac{1}{2}\Delta\Gamma_s t) - c_k \cos(\Delta m_s t) - d_k \sin(\Delta m_s t) \right]$$

 $f_k(\Omega)$: amplitude function.

 $b_k \sim \pm |\lambda| \cos(\phi_s), \ d_k \sim \pm |\lambda| \sin(\phi_s)$

 $\sigma(\phi_s) \propto 1/\sqrt{N_{\rm eff}}$

- $\bigcirc~N_{\rm eff} \propto N_{b\bar{b}}$
- $\bigcirc~N_{
 m eff} \propto$ Efficiency
- \bigcirc $N_{
 m eff} \propto$ Tagging power
- $\bigcirc \ \sigma_{\phi_s} \propto 1/e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2}$

Define:

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

Then: $\sigma(\phi_s, FE) = \xi_{FE} \times \frac{\sigma(\phi_s, EE)}{\xi_{EE}}$

ξ for LHCb Run2 and LHCb on HL-LHC

Numbers are quoted from Eur. Phys. J.C79(2019)706

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

N_{bb̄} × ε × Br = 11700. Avoid considering the efficiency on LHCb.
S_{int} = 1.9fb⁻¹, bb̄ cross-section:144 μb, Br = 20% × 0.001 × 0.06 × 0.5.
ε = 7%, where the bb̄ is already in the acceptance, reasonable estimation.
Tagging power p = 4.73%.
Decay time resolution: 45.5 fs.

 ξ :

$$\begin{array}{l} \bigcirc \ \xi_{\mathsf{LHCb}} = 0.018, \sigma(\phi_s, \mathsf{LHCb}) = 0.041 \mathrm{rad.} \\ \bigcirc \ \xi_{\mathsf{LHCb}} = 0.0014, \ \sigma(\phi_s, \mathsf{HL-LHCb}) = \xi_{\mathsf{HL-LHCb}} \times \sigma(\phi_s, \mathsf{lhcb}) / \xi_{\mathsf{LHCb}} = 3.2 \mathrm{\ mrad} \\ (\mathsf{HL-LHC:} \ N_{\mathsf{HL-LHCb}} = N_{\mathsf{LHCb}} \times \frac{300 \mathrm{\ fb}^{-1}}{1.9 \mathrm{\ fb}^{-1}} \times \frac{14 \mathrm{\ TeV}}{13 \mathrm{\ TeV}}) \end{array}$$

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times \sqrt{p}\times \exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

 $\bigcirc~$ Tera-Z: $0.152\times10^{12},$ 10-Tera-Z: 1.52×10^{12}

 \bigcirc $Br = 20\% \times 0.001 \times 0.06 \times 0.5 \times 2$. (J/ ψ can also be reconstructed from e^+e^- on CEPC)

ξ for CEPC (Efficiency)

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \pmb{\varepsilon}\times Br}\times \sqrt{p}\times \exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

Reconstruction:

- \bigcirc Assume that we can distinguish $b \bar{b}$ events from other events.
- Assume that we have perfect ability to distinguish leptons with hadrons.
- $\bigcirc~\phi$ candidates: $1.017-1.023\,{\rm GeV}/c^2,$ two hadron tracks.
- $\bigcirc J/\psi$ candidates: $3.07 3.14 \, {\rm GeV}/c^2$, two lepton tracks.
- $\bigcirc B_s^0$ candidates: $5.28 5.46 \, {\rm GeV}/c^2$, combination of all $J/\psi \, \phi$ candidates.

Extraction of ϕ_s require a clean background.

The number of background events are 1.7×10^5 times larger than the number of signal events. In pure background (from simulation):

- \bigcirc The probability to find a $J\!/\!\psi\,$ candidate is 0.4%.
- $\bigcirc\,$ The probability to find a ϕ candidate is 3.6%.
- \bigcirc The probability to get a B^0_s candidate from $J\!/\!\psi\,\phi$ combination is 4.6%.
- Total: 6.7×10^{-6} .

The background is of same magnitude with the signal.

 ξ for CEPC (Efficiency)

 $\odot~\chi^2 < 0.1$ keeps 95% of the signal and reject 99.2% of the background.

 $\varepsilon=75\%$ with 1% background level.

ξ for CEPC (Tagging power)

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times \sqrt{p}\times \exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

20% of the tagging power can be easily achieved with a naive algorithm and with assumption of perfect pid. (Same side + Opposite side algorithm) Dependence on particle identification:

 $\label{eq:correct} \begin{array}{l} \mbox{Corretly identification rate:} 1-\omega, \\ \mbox{misidentification probability: } \omega/2 \end{array}$

Considering the particle identification from the detector simulation, the tagging power is:

- Intrinsic tagging power (without considering the effects from the readout electronics): 19.1%.
- Realistic/conservative tagging power (if the particle identification resolution is degraded by 30% with respect to the intrinsic case): 17.4%.

11/16

ξ for CEPC (Time resolution)

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

Obtained from detector simulation. Proper decay time: $t = \frac{m l_{xy}}{p_{\rm T}}$ Fit with sum of three gaussian.

$$\sigma_{\text{eff}} = \sqrt{-\frac{2}{\Delta m_s^2} \ln(\sum_i f_i e^{-\frac{1}{2}\sigma_i^2 \Delta m_s^2})} = 4.7 \,\text{fs}.$$

(Reminder LHCb: 45 fs)

The excellect time resolution benefits from the precise vertex reconstruction and large energy of $B_{s}. \label{eq:benefit}$

ξ for CEPC (Summary)

Putting all the components together: $\xi_{CEPC} = 0.0019$ (Tera-Z), $\sigma(\phi_s, CEPC) = 4.3$ mrad.

	LHCb(HL-LHC)	CEPC(Tera-Z)	CEPC/LHCb
$bar{b}$ statics	43.2×10^{12}	0.152×10^{12}	1/284
Acceptance×efficiency	7%	75%	10.7
Br	6×10^{-6}	12×10^{-6}	2
Flavour tagging (perfect pid)	4.7%	20%	4.3
Time resolution $(\exp(-rac{1}{2}\Delta m_s^2{\sigma_t^2}^2)$	0.52	1	1.92
scaling factor ξ	0.0014	0.0019	0.8
$\sigma(\phi_s)$	$3.3 \mathrm{mrad}$	$4.3 \mathrm{mrad}$	
Flavour tagging (realistic/conservative pid)	4.7%	17.3%	3.7
$\sigma(\phi_s)$	$3.3 \mathrm{mrad}$	$4.6 \mathrm{mrad}$	

Impact from time resolution and flavour tagging

- Time resolution and tagging power dependence for observables.
- $\, \bigcirc \, \phi_s$ resolution has potential to be improved with better tagging power.
- $\bigcirc \Delta \Gamma_s$ (and also Γ_s) has weak dependence: lose the factor of 4.3×1.92 .

Results

- Black point: SM global fit (CKMfitter group/UTfit collaboration) + HQE (Proc.Int.Sch.Phys.Fermi 137(1998)329,Adv.Ser.Direct.High Energy Phys.15(1998)239) prediction.
- ATLAS and CMS results are from ATL-PHYS-PUB-2018-041 and CMS-PAS-FTR-18-041.

Summary

- \bigcirc Competitive ϕ_s resolution for CEPC(Tera-Z) and LHCb(HL-LHC).
 - Expected ϕ_s resolution: CEPC(Tera-Z) is a little worse than LHCb(HL-LHC).
 - $\circ\,$ CEPC has potential to improve the flavour tagging to get better ϕ_s resolution with better algorithm.
- Only in the 10-Tera-Z configuration, can Z factories be competitive to the LHCb(HL-LHC) for $\Delta\Gamma_s$ and Γ_s measurements.
- Particle identification is critical.
 - $\circ~$ We assume perfect distinguish between lepton and hadron.
 - $\circ\,$ Hadron pid is not used in reconstruction. With the information, a better efficiency is expected.
 - Tagging power drop fast with particle misidentification.
- $\, \odot \,$ Vertex reconstruction is critical for background suppression.

Thank you for your attention!