Test of Lepton Flavour Universality in semileptonic *b*-decays, R(H_c)

Jibo HE/何吉波(UCAS) CEPC味物理-新物理与相关探测技术研讨会 August 13-18, 2023

Large Hadron Collider

27 km

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavour factory!

Predominantly in forward/backward cones

The LHCb experiment

The LHCb trigger (2018)

- LO, Hardware
 - $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \, {\rm GeV})^2$
 - $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
 - $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
 - $-E_{\rm T}(\gamma) > 3.0 {
 m GeV}$
 - $-E_{\rm T}(h) > 3.7 {
 m GeV}$
- High Level Trigger
 - Stage1, p_{T} , IP
 - Stage2, full selection

Lepton flavour universality

• In SM, three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavor universality violation? New Physics!

Experimental test of LFU

- Well established in SM, e.g. $W \rightarrow \ell v$
 - Some tension at LEP,

addressed by ATLAS/CMS

[ATLAS, NP 17 (2021) 813; CMS, PRD 105 (2022) 072008]

LFU in B system, pre-LHCb

• R(D^(*)), Babar reported deviation of ~3.2σ

• No deviation seen in FCNC $b \rightarrow s\ell^+\ell^-$ decays

$R(H_c)$, exp. challenge at LHCb

- Definition $R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \mu^- \bar{\nu}_{\mu})}$
- Signal

- Missing energy by neutrinos, no narrow peak

- Use *B* flight direction, pRec algo* to get p_B^{pRec}

$$m_{\rm miss}^2 \equiv (p_B^{\rm pRec} - p_{D^{(*)}} - p_{\mu})^2$$
, $q^2 = (p_B^{\rm pRec} - p_{D^{(*)}})^2$

* More in [F. U. Bernlochner et al., RMP 94 (2022) 015003]

$R(H_c)$, exp. challenge at LHCb

- Background ($H_c + \mu$)
 - Fake H_c H_c sideband
 - Fake μ H_c +Track Each reweighted by $\sum F_i P_{i \to \mu}$
 - F_i , probability of a track to be a particlar particle
 - *P_{i→µ}*, mis-ID rate, use calib sample, note decay-in-flight
 - True H_c and muon, e.g.,
 - $B \to D^*D(\to \mu X)X$
 - $B \rightarrow D^{**} \mu \nu$ isolation

$R(D^{(*)})$ using muonic τ decays

- $\mathcal{B}(\tau \rightarrow \mu X)^{\sim}17.4\%$
- 3D fits

$$m_{\text{miss}}^{2} \equiv \left(\boldsymbol{p}_{B}^{\text{pRec}} - \boldsymbol{p}_{D^{(*)}} - \boldsymbol{p}_{\mu}\right)^{2} \xrightarrow{\pi} \left(\boldsymbol{p}_{B}^{\pi} - \boldsymbol{p}_{D^{(*)}} - \boldsymbol{p}_{\mu}\right)^{2} \xrightarrow{\mu} \left(\boldsymbol{p}_{B}^{\mu} - \boldsymbol{p}_{D^{(*)}}\right)^{2} \xrightarrow{\mu} \left(\boldsymbol{p}_{B}^{\mu} - \boldsymbol{p$$

- Signal yields: 44 000
- Systematics: Simulation size, form factors, ... $R(D^*)=0.281 \pm 0.018 \pm 0.023$

$R(D^*)$ using 3-prong τ decays

- $\mathcal{B}(\tau \to 3\pi^{\pm}X)^{\sim}9\% + 4\%(\geq 1\pi^{0})$
- Normalized to $B^0 \rightarrow D^{*-}3\pi$

 $R_{had}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \quad R(D^*) = R_{had}(D^*) \times \frac{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{\mathcal{B}(B^0 \to D^{*-} \mu^- \nu_{\mu})}$

- 3D fits, R(D*)=0.247 ± 0.015 ± 0.015 ± 0.012
 - Signal yields: 2469 ± 154
 - Systematics: Simulation size, $D \rightarrow 3\pi X$ template, ...

 τ^+ $\Delta z > 4\sigma$.

$R(\Lambda_c^+)$ using 3-prong τ decays

5σ

• Noramalized to $\Lambda_h^0 \to \Lambda_c^+ 3\pi$

 $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu) = (6.2 \pm 1.4)\%$ by DELPHI

- 3D fits, $R(\Lambda_c^+)=0.242 \pm 0.026 \pm 0.040 \pm 0.059$ - Signal yields: 349 ± 40
 - Systematics: $D \rightarrow 3\pi X$ template, $\Lambda_h^0 \rightarrow \Lambda_c^+ DX$

$R(J/\psi)$ using munoic τ decays

- Measure $R(J/\psi)$ using munoic τ decays
 - Pros: 3μ , $\mathcal{B}(\tau \rightarrow \mu X)^{\sim}17.4\%$
 - Cros: small $\sigma(B_c^+)$, no τ vertex
 - m Run-I, 1400 \pm 300 signal (3 σ)

Systematics, one example

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B} \ (\overline{B} \to D^* D^s (\to \tau^- \overline{\nu}_\tau) X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} \ (\ \overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau} \)$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
$B \rightarrow D^{(*)}DX \mod \text{uncertainty}$	0.6	0.7	
$\overline{B}{}^0_s \to D^{**}_s \mu^- \overline{\nu}_\mu \mod \text{uncertainty}$	0.6	2.4	
Data/simulation corrections	0.4	0.8	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
MisID template unfolding	0.7	1.2	
Baryonic backgrounds	0.7	1.2	
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
Data/simulation corrections	$0.4 imes \mathcal{R}(D^*)$	$0.6 imes \mathcal{R}(D^0)$	
$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2{ imes}\mathcal{R}(D^*)$	$0.2{ imes}\mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

Summary of LFU in $b \rightarrow c \ell \nu$ decays

Deviations from SM seen by Babar/Belle/LHCb

$R(H_c)$ with electron at LHCb?

• Even more challenging, due to Bremsstrahlung

- Partially Rec'ed Bkg compensated by Brem. over-correction and enters the signal region, challenging even for fully Rec'ed decays
- $B^+ \rightarrow K^+ \ell^+ \ell^-$ in high-q² not public yet, take plots in low/central q² paper to illustrate

Prospects

LHCb upgrades (2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle-II	LHCb Upgrade-II	ATLAS &CMS
$R(D^*)$	0.026	0.0072	0.005	0.002	
$R(J/\psi)$	0.24	0.071		0.02	?

How about **CEPC**?

- Having both advantages
 - Access to all *b*-hadrons, as LHCb
 - Good ablility of dealing with missing energy, as *B*-factories

 $B_c^+
ightarrow au^+
u$, [T. Zheng *et al.*, CPC 45 (2021) 023001]

- Detector requirements
 - Excellet vertexing, tracking
 - Hadron + lepton PID? Yes
 - Flexible trigger? Yes

Summary

 LHCb has tested lepton flavour universality in semileptonic *b*-decays

 $-R(D), R(D^*), R(\Lambda_c^+) \text{ and } R(J/\psi),$

some deviations from SM seen, to be confirmed or refuted with more data

• Efforts from both theo. and exp. sides needed to improve precision further, e.g.,

Form factors

 $-B \rightarrow DDX$, $D \rightarrow 3\pi X$

• CEPC will be a main player in this field