

Highlights of Charm Physics Results @ LHCb

Liang Sun Wuhan University 2023/08/17

CEPC味物理-新物理和相关探测技术研讨会(复旦大学)

Outline

- Experimental details
- Charm mixing & CPV
- Rare charm decays
- Spectroscopy & amplitude analyses
- Other decays
- Prospects & outlook

Up-to-date LHCb charm results can be found at <u>https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_Charm.html</u> More than 90 papers and counting!

LHCb as a charm factory

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- Large production cross-section

 $\sigma(pp \rightarrow c \bar{c}) = (2369 \pm 3 \pm 152 \pm 118) \mu b @ 13 TeV \sim 20 \times \sigma(pp \rightarrow b\bar{b}X)$

[IHEP 03 (2016) 159]

- More than 1 billion $D^0 \rightarrow K^-\pi^+$ collected by LHCb between 2011 and 2018
- Run2: Turbo stream from online reconstruction • [Comput. Phys. Commun. 208 (2016) 35]

Charm mixing & CPV

- Charm mixing a well-established fact:
 - Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- CP violation contributions:
 - In decays: amplitudes for a process and its conjugate differ

D^o production at LHCb

D° flavor tagging at LHCb

Observation of charm CPV

- LHCb uses full Run2 5.9 fb-1 data
- Raw asymmetry for tagged D⁰ decays to a final state *f* (K+K-, π+π-):

 $A_{\rm raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to f)}{N(D^0 \to f) + N(\overline{D}{}^0 \to f)}$

- $\mathbf{A}_{raw} = \mathbf{A}_{CP} + \mathbf{A}_{D} + \mathbf{A}_{P}$
 - $\textbf{A}_{\textbf{D}}$: Detection asymmetry from π_{s} (prompt)
 - A_P : Production asymmetry of D^{*} (prompt)
- With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\overline{\Lambda}A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

Observation of charm CPV

• From full Run2 5.9 fb-1 data:

$$egin{aligned} \Delta A_{CP}^{\pi-tag} &= (-18.2 \pm 3.2 \pm 0.9) imes 10^{-4}, \ \Delta A_{CP}^{\mu-tag} &= (-9 \pm 8 \pm 5) imes 10^{-4} \end{aligned}$$

• Combination with Run1 results:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

- Observation of CP violation with 5.3σ significance!
- Result is consistent with, although at upper end of SM expectations (10-3 10-4)

[arXiv:2209.03179, submitted to PRL]

CPV in
$$D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$$

- Using Run 2 (5.6 fb⁻¹) data with ~70M $D^0 \rightarrow K^+ K^$ candidates
- Combination of two methods using Cabibbofavored (no CPV) $D^0/D^+/D_s^+$ decays to cancel detector/production asymmetries in $D^0 \rightarrow K^+K^-$:

 $A_{CP}(K^+K^-) = [6.8 \pm 5.4(\text{stat}) \pm 1.6(\text{sys}))] \times 10^{-4}$

• Combination with Run1 & ΔA_{CP} results yields:

$$a_{CP}^{d}(K^{+}K^{-}) = [7.7 \pm 5.7] \times 10^{-4}$$
$$a_{CP}^{d}(\pi^{+}\pi^{-}) = [23.2 \pm 6.1] \times 10^{-4}$$
$$\rho(a_{KK}^{d}, a_{\pi\pi}^{d}) = 88\%$$

0/1600 1400 LHCb $D^0 \rightarrow K^- K^+$ $5.7 \, {\rm fb}^{-1}$ Data Fit Run2 Comb. bkg. N~70M Candidates per (000 008 000 000 008 000 2010 2015 2005 $m(D^0\pi^+)$ [MeV/ c^2] $A_{CP}(\pi^+\pi^-) = A(K^+K^-) - \Delta A_{CP}$ ad n LHCb combination, 8.7 fb LHCb 0.006 LHCb combination, 3.0 fb No direct CPV 0.004 0.002 -0.002-0.0040.004 -0.0020.002 -0.0040 $a^d_{K^-K^+}$

First evidence (3.8 σ) of CPV in $D^0
ightarrow \pi^+ \pi^-$

 $D^0 - \overline{D}^0$ oscillation in $D^0 \to K^0_{\varsigma} \pi^+ \pi^-$

- Run2 prompt (SL) datasets with ~31M (3.7M) candidates
- Bin-flip method: model-independent approach, no need for modeling of Dalitz-plot efficiency & decay amplitudes

Simultaneous fit of the yield ratio R_b^{\pm} (\pm for initial D^0/\overline{D}^0) between $\pm b$ and -b in bins of D^0 decay time t:

 $R_b^{\pm}(t) \approx r_b - \sqrt{r_b} [(1-r_b)c_b \mathbf{y} - (1+r_b)s_b \mathbf{x}] \Gamma t$

- $r_b \equiv R_b(t=0)$
 - c_b and s_b : parameters related to the strong phase differences between $\pm b$ regions (based on external inputs from <u>CLEO</u> and <u>BESIII</u>).

[PRL 127 (2021) 111801]

$D^0 - \overline{D}^0$ oscillation in $D^0 \to K_S^0 \pi^+ \pi^-$

Overview of rare charm decays @ LHCb

Search for $D^0 \rightarrow \mu^+ \mu^-$

FCNC & helicity suppression

• Predictions:
$$\mathcal{B}^{s.d.}(D^0 \to \mu^+ \mu^-) \sim 10^{-18}$$

 $\mathcal{B}^{(\gamma\gamma)}(D^0 \to \mu^+ \mu^-) < 2.3 \times 10^{-11}$

- Full Run1+2 analysis (9 fb⁻¹), D^0 from prompt $D^{*+} \rightarrow D^0 \pi^+_{tag}$
- Normalization channel: $\mathcal{B}(D^0 \to \mu^+ \mu^-) = \alpha N_{D^0 \to \mu^+ \mu^-}, \quad \alpha \sim \frac{\mathcal{B}(D^0 \to h^- \pi^+)}{N_{D^0 \to h^- \pi^+}} \frac{\varepsilon_{D^0 \to h^- \pi^+}}{\varepsilon_{D^0 \to \mu^+ \mu^-}} \sim 2 \times 10^{-11}$
- 2D simultaneous fits in 3 BDT bins per run:

Peaking mostly from π/μ misID

Final result:

 $\mathcal{B}(D^0 o \mu^+ \mu^-) < 2.9(3.3) imes 10^{-9}$ at 90(95)% C.L.

Improvement of more a factor of two! 13

PRL 128 (2022) 221801

CPV & angular analysis of $D^0 \rightarrow hh\mu^+\mu^-$

- Rarest charm meson decays observed, dominated by resonant contributions
- First full angular analysis with 9 fb⁻¹ data
- D^0 selected from flavor specific $D^{*+} \rightarrow D^0 \pi^+$

All results consistent with SM No CPV found

Search for $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell^{(\prime)\mp}$ decays

- 25 decays, LFV & LNV included
- Analysis based on 2016 1.6 fb⁻¹ dataset
- Normalized with $D^+_{(s)} \to \phi(\ell \ell) \pi^+$
- No signal observed, BF limits are set down to $O(10^{-8})$
- Results improve the prior world's best by up to a factor of 500

Amplitude analyses in hadronic decays

Hadronic decays with π^0/η

No CPV found Almost all are world's best!

Spectroscopy & charm hadron properties

PRL 119 (2017) 112001 PRL 121 (2018) 052002 PRL 121 (2018) 162002

production, decay modes

Observation of 5+2 Ω_c^0 states

PRL 121 (2018) 092003 PRD 100 (2019) 032001 Science Bulletin 67 (2022) 479

Establishment of charmedhadron lifetime hierarchy:

 $\tau_{\Xi_{c}^{+}} > \tau_{\Omega_{c}^{0}} > \tau_{A_{c}^{+}} > \tau_{\Xi_{c}^{0}}.$

Run3 and beyond...

Rare decays

Mixing & CPV						Mode	Upgrade (50 fb $^{-1}$)	Upgrade II (300 $\mathrm{fb}^{-1})$
					$D^0 o \mu^+ \mu^-$	$4.2 imes10^{-10}$	$1.3 imes10^{-10}$	
Observable	Current LHCb	Upgr	ade I	$\begin{array}{c} \text{Upgrade II} \\ (300\text{fb}^{-1}) \end{array}$	Limits on BFs	$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10^{-8}	$3 imes 10^{-9}$
Charm	$(up to 9 fb^{-1})$	$(23 {\rm fb}^{-1})$	$(50{\rm fb}^{-1})$			$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\frac{\Delta A_{CP}}{\Delta A_{CP}} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	$29 imes 10^{-5}$ [5]	17×10^{-5}		$3.0 imes 10^{-5}$		$\Lambda_c^+ o p \mu^+ \mu^-$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$A_{\Gamma} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$	$13 imes 10^{-5}$ [38]	$4.3 imes 10^{-5}$	_	$1.0 imes 10^{-5}$		$D^0 o e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$
$\Delta x \ (D^0 o K^0_{ m s} \pi^+ \pi^-)$	$18 \times 10^{-5} [37]$	$6.3 imes 10^{-5}$	4.1×10^{-5}	1.6×10^{-5}		$D^+ ightarrow \pi^+ \mu^+ \mu^-$	0.2%	0.08%
Reaching for sub-10 ⁻⁴ precision				Stat. precision on asymmetries	$D^0 o \pi^+\pi^-\mu^+\mu^-$	1%	0.4%	
					$D^0 ightarrow \pi^+ K^- \mu^+ \mu^-$	0.3%	0.13%	
					$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%	
					$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%	

How CEPC could make impacts in charm physics

- Charm statistics of 300 fb⁻¹ LHCb dataset would be much higher than CEPC due to high $pp \rightarrow c\bar{c}X$ cross-section
- CEPC is exected to be promising for the following measurements:
 - SL charm hadron decays: full event info + displaced vertices + low mult.
 - SL decays of Ξ_{cc}
 - Radiative charm decays: discrimination power of single photon vs. π^0/η would be the key
 - $D^0 \rightarrow V(h^+h^-) + invisible(\nu\bar{\nu}, \gamma', etc.)$
 - Di-electron channels
 - Time-dependent study of D⁰ decays with at least one π^0/η in the final state, *e.g.*, time-dependent amplitude analysis of $D^0 \rightarrow K\pi\pi^0/\pi\pi\pi^0$

Summary

- LHCb is in fact a charm factory and has the world's largest sample of charm decays
- High statistics and superb detector performance allow for high precision measurements on charm CP, rare decays, etc.
 - Observations of charm CPV, difference in D⁰ mass eigenstates, etc.
- Still more charm results in the pipeline with full Run1+2 data, stay tuned!
 - For example, semileptonic D⁰ decays, dielectron channels, charm baryons, ...
- Run3 for LHCb has started
- Experiences from LHCb in charm physics would be extremely valuable for future CEPC

Prospects for measurements with strange hadrons at LHCb

arXiv:1808.03477

A. A. Alves Junior¹, M. O. Bettler², A. Brea Rodríguez¹, A. Casais Vidal¹, V. Chobanova¹, X. Cid Vidal¹, A. Contu³, G. D'Ambrosio⁴, J. Dalseno¹, F. Dettori⁵, V.V. Gligorov⁶, G. Graziani⁷, D. Guadagnoli⁸, T. Kitahara^{9,10}, C. Lazzeroni¹¹, M. Lucio Martínez¹, M. Moulson¹², C. Marín Benito¹³, J. Martín Camalich^{14,15}, D. Martínez Santos¹, J. Prisciandaro¹, A. Puig Navarro¹⁶, M. Ramos Pernas¹, V. Renaudin¹³, A. Sergi¹¹, K. A. Zarebski¹¹

Figure 1: Multiplicity of particles produced in a single pp interaction at $\sqrt{s} = 13$ TeV within LHCb acceptance.

Backup Slides

Particle	Belle II	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
B^0, \bar{B}^0	$5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	$4.8 imes 10^{11}$
B^{\pm}	$5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	4.8×10^{11}
B_s^0, \bar{B}_s^0	6.0×10^8 (5 ab ⁻¹ on $\Upsilon(5S)$)	1×10^{13}	1.2×10^{11}
B_c^{\pm}	-	1×10^{11}	7.2×10^8
$\Lambda_b^0, ar{\Lambda}_b^0$	-	2×10^{13}	1×10^{11}
$D^0,ar{D}^0$		7×10^{14}	$5.2 imes 10^{11}$
D^{\pm}		3×10^{14}	2.2×10^{11}
D_s^{\pm}		1×10^{14}	8.8×10^{10}
Λ_c^\pm		1×10^{14}	5.5×10^{10}
$ au^{\pm}$	$4.5 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$		1.2×10^{11}

- Expected: $\mathcal{B}(K_{\rm L}^0 \to \mu^+ \mu^-)_{\rm SM} = (6.85 \pm 0.80_{\rm LD} \pm 0.06_{\rm SD}) \times 10^{-9}$
- Sensitive to NP contributions
- Dedicated software trigger in Run2
- Normalized to $K^0_S \rightarrow \pi^+ \pi^-$
- Combined results from Runs1-2:
- $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10} \text{ at } 90\% \text{ CL}$

Total

Search for $K^0_{S(L)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Expected:

 $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^- \mu^+ \mu^-)_{\rm SM} \sim (1-4) \times 10^{-14}.$

 $\mathcal{B}(K_{\rm L}^0 \to \mu^+ \mu^- \mu^+ \mu^-)_{\rm SM} \sim (4-9) \times 10^{-13}.$

- LHCb acceptance for $K_L^0 \sim 0.2\%$ of K_c^0
- Normalized to $K^0_{S} \rightarrow \pi^+ \pi^-$
- No events found in the signal mass window
- ULs @ 90% CL using 5.1 fb⁻¹ Run2:

 $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12},$ $\mathcal{B}(K_{\rm L}^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9},$