Charm physics measurement at BESIII

Bai-Cian Ke Zhengzhou University

@CEPC 2023 Aug 13 - 18, Shanghai

Outline

BESIII dataset

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Summary

•Charmed meson (D^0, D^+, D_s^+)

• pure leptonic decays

- semi-leptonic decays
- hadronic decays
- quantum correlation

•Charmed baryon (Λ_c^+)

- semi-leptonic decays
- hadronic decays
- Prospect

Pure leptonic D decay

$$\Gamma(D_{(s)}^{+} \to l^{+}\nu) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{l}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

Decay constant $f_{D^+_{(s)}}$: Calibrate Lattice QCD

CKM matrix element $|V_{cd(s)}|$:

Test the unitarity of CKM matrix

Lepton flavor universality

 $e^+ v_e : \mu^+ v_\mu : \tau^+ v_\tau$ $D^+ \ 10^{-5} : 1 : 2.67$ $D_s^+ \ 10^{-5} : 1 : 9.75$

One neutrino missing in an muonic event

Two or three neutrinos missing in an tau event

$$U_{\rm miss} = E_{\rm miss} - |\overrightarrow{p}_{\rm miss}|$$
$$M_{\rm miss}^2 = E_{\rm miss}^2 - |\overrightarrow{p}_{\rm miss}^2|$$

Phys. Rev. D 89, 051104 (2014)

Phys. Rev. Lett. 123, 211802 (2019)

Unfortunately $D^+ \rightarrow \tau^+ \nu_{\tau}$ can't contribute to D^+ decay constant measurement

$D_{s}^{+} \rightarrow l^{+} \nu$

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

Semi-leptonic $D \rightarrow Pe^+\nu$

Form factor $f_+(0)$: Calibrate Lattice QCD

CKM matrix element $|V_{cd(s)}|$: Test the unitarity of CKM matrix

Test $e - \mu$ Lepton flavor universality

Comparison of decay constant

Dominated by statistical uncertainty

Comparison of form factor

Experimental precision is comparable to the latest QCD result

Comparison of $|V_{cd(s)}|$

				SM fit	PDG2022	·	0.97320±0.00011	-	
				PDG	PDG2022, D→Kl	v	0.939±0.038	-=-	
SM fit	PDG2022	0.22636±0.00048		CLEO	PRD79,052002, [$D_{s}^{+} \rightarrow \tau_{ev} v$	0.981±0.043±0.021	-=-	
			T I	CLEO	PRD80,112004, [$D_{s}^{+} \rightarrow \tau_{\rho\nu} v$	1.001±0.052±0.020	-=-	
				CLEO	PRD79,052001, [$D_{z}^{+} \rightarrow \tau_{\pi\nu} \nu$	1.080±0.068±0.016	-=-	
	0(1)			BaBar	PRD82,091103, [$D_{e^{\nu\nu},\mu\nu\nu}^{\dagger}$	0.949±0.035±0.055		
PDG	PDG2022, D^{°(+)}→π⁻⁽⁰⁾I ⁺ ν	0.2330±0.0029±0.0133 -	┿╍──│	Belle	JHEP1309,139, D	$D_{evv, \mu v v, \pi v}^{\dagger}$	1.017±0.019±0.028	-	
				BESIII	PRD94,072004, [$D_{s}^{\dagger} \rightarrow \mu \nu, \tau_{\pi \nu} \nu$	0.936±0.063±0.025		
				CLEO	PRD79,052001, [D⁺→μν	1.000±0.040±0.016	-=-	
CLEO	PRD78,052003, D ⁺ →Iv	0.218±0.009±0.003 —■	BaBar	PRD82,091103, [D [*] _→μν	1.032±0.033±0.029	-=-		
				Belle	JHEP1309,139, [Ω [*] →μν	0.969±0.026±0.019	-	
				BESIII	PRL122,121801,	Ď ⁺ _s →η' e ν	0.917±0.094±0.021		
			0 70/	BESIII	PRL122,121801,	D ⁺ →η e ν	1.031±0.012±0.080		
BESIII	PRD89,051104, D⁺→ μν	0.2150±0.0055±0.0020	∠. / / 0	BESIII	PRL122,011804,	Ο⁰→Κ μν	0.967±0.004±0.007	· •	
				BESIII	PRL122,071802,	D ⁺ →µν	0.985±0.014±0.014	• • •	
				BESIII	PRD104,052009,	D ⁺ _s →μν	0.973±0.012±0.015	• • •	.1 %
BESIII	Expected (20fb ⁻¹). $D^+ \rightarrow \mu \gamma$	0.2150±0.0021±0.0017 • 1.0•	1.0%	BESIII	PRD104,052009,	$D_{s}^{\dagger} \rightarrow \tau_{\pi\nu} \nu$	0.972±0.023±0.016	- 1	• /0
				BESIII	PRD104,032001,	$\mathbf{D}_{\mathbf{v}}^{+} \rightarrow \tau_{ov} \mathbf{v}$	0.980±0.023±0.019	-	
				BESIII	PRL127,171801,	$D_{evv}^{+} \rightarrow \tau_{evv} v$	0.978±0.009±0.012	• • • I	
	0.05 0.1	0.15 0.2	0.25	-1.	5 -I	-0.5	0 0.5		
	IV	/]				١٧ ا			
		cd							

Both pure- and semi-leptonic decays contribute

We have also study...

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

Amplitude analysis of $D_s^+ \rightarrow K^+ K^- \pi^+$

Observation of $a_0(1817)$ in D_s decays

Amplitudes analyses of D_s decays

most three and four body decays of Ds

$D^{\scriptscriptstyle +}_{\scriptscriptstyle S} o \pi^{\scriptscriptstyle +} \pi^0 \eta$	Phys. Rev. Lett. 123, 112001 (2019)
$D_s^+ \rightarrow K^+ K^- \pi^+$	Phys. Rev. D 104, 112016 (2019)
$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^0$	Phys. Rev. D 104, 032011 (2021)
$D_s^+ \rightarrow K_s^0 K^- \pi^+ \pi^+$	Phys. Rev. D 103 , 092006 (2021)
$D^{\scriptscriptstyle +}_{\scriptscriptstyle S} o \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} \eta$	Phys. Rev. D 104, L071101 (2021)
$D_s^+ \rightarrow K_S^0 \pi^+ \pi^0$	JHEP 06, 181 (2021)
$D_s^+ \rightarrow K_S^0 K^+ \pi^0$	Phys. Rev. Lett 129, 182001 (2022)
$D_s^+ \rightarrow K_S^0 K_S^0 \pi^+,$	Phys. Rev. D 105, L051103 (2022)
$D_{s}^{+} \rightarrow \pi^{+}\pi^{0}\eta^{'}$	JHEP 04, 058 (2022)
$D_s^+ \rightarrow \pi^+ \pi^- \pi^+$	Phys. Rev. D 106, 112006 (2022)
$D_s^+ \rightarrow \pi^+ \pi^0 \pi^0$	JHEP 01, 052 (2022)
$D_s^+ \rightarrow K^+ \pi^+ \pi^-$	JHEP 08, 196 (2022)
$D_s^+ \to K^+ K^- \pi^+ \pi^+ \pi^-$	JHEP 07, 051 (2022)
$D_s^+ \to K^+ \pi^+ \pi^- \pi^0$	JHEP 09(2022) 242
$D_s^+ \to K^+ \pi^+ \pi^-$	JHEP 08(2022) 196
	We have finished amplitude analyses of

20

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays
- Prospect

Quantum Correlation

Quantum correlated data: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0$ Best laboratory to measure strong-phase parameters

CP-odd:
$$\psi(3770) = (D^0 \overline{D}^0 - D^0 \overline{D}^0) = (D_+ D_- - D_- D_+)$$

 $\int_{J^{PC}} = 1^{--}$
CP-even eigenstate CP-odd eigenstate

Inputs for CPV studies at B experiments

•The CKM angle γ/ϕ_3 :

self-conjugated decay: CP fraction $F_+ \rightarrow$ GLW/GGSZ method; strong phase ci(') and $si(') \rightarrow$ GGSZ method non-self-conjugated decay: the coherence factor R and averaged strong phase difference $\delta \rightarrow$ ADS method

Determination of $\delta_{D}^{K\pi}$

An update measurement of the asymmetry between

CP-odd and CP-even eigenstate decays into $K^-\pi^+$

• $\delta_D^{K\pi} = (187.6^{+8.9+5.4}_{-9.7-6.4})$

EPJC 82, 1009 (2022)

Determination of CP fraction

 $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^ F_{+} = 0.735 \pm 0.015 \pm 0.005$ $F_{+} = 0.730 \pm 0.037 \pm 0.021$ PRD 106, 092004(2022)

 $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ PRD 107, 032009(2023)

 $D^0 \rightarrow K_s^0 \pi^- \pi^+ \pi^0$ $F_+ = 0.235 \pm 0.010 \pm 0.002$ arxiv:2305.03975

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation

•Charmed baryon (Λ_c^+)

- semi-leptonic decays
- hadronic decays

Prospect

Study of $\Lambda_c^+ \to \Lambda e^+ \nu$

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation

•Charmed baryon (Λ_c^+)

- semi-leptonic decays
- hadronic decays
- Prospect

Partial wave analysis of the charmed baryon hadronic decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

 $\Lambda_{\rm c}^+ \rightarrow \Lambda \rho^+$: both factorizable(a) and non-factorizable(b-d) $\Lambda_{\rm c}^+ \rightarrow \Sigma (1385)\pi$: pure non-factorizable(e)

Provide important inputs to the theoretical calculations for non-factorizable Use new-developed Tensor Flow based package TF-PWA*. (*BESIII Preliminary: https://github.com/jiangyi15/tf-pwa) 27

Partial wave analysis of the charmed baryon hadronic decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

The first PWA of $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

	Theoretical c	This work	PDG	
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.070	
$\alpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.4}_{-0.2}$	-0.917 ± 0.089		
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91^{+0.4}_{-0.2}$	$^{45}_{10}\ [17]$	-0.79 ± 0.11	

The first measurement of the decay asymmetry parameters for the relevant resonance Ref. [13]: PRD 101 (2020) 053002. Ref. [14,15]: PRD 46 (1992) 1042; PRD 55 (1997) 1697. Ref. [16]: EPJC 80 (2020) 1067. Ref. [17]: PRD 99 (2019) 114022

Measurement of the absolute branching fraction of the singly Cabibbo suppressed decays of $\Lambda_c^+ \rightarrow n\pi^+$

- Disagrees with most predictions of phenomenological models
- Non-factorization contributions may be overestimated.

•Charmed meson (D^0, D^+, D_s^+)

- pure leptonic decays
- semi-leptonic decays
- hadronic decays
- quantum correlation
- •Charmed baryon (Λ_c^+)
 - semi-leptonic decays
 - hadronic decays

Prospect

20 fb⁻¹ of data set at 3.773 GeV is on the way **Leptonic Decay**

BESIII is expected to provide unique data to improve the knowledge of f_{D^+} and $|V_{cd}|$ and test LFU in $D^+ \rightarrow l^+ \nu_l$ decays.

20 fb⁻¹ of data set at 3.773 GeV is on the way

Semi-leptonic Decay

- All form-factor measurements which are currently statistically limited will be improved by a factor of up to 2.6.
- $\succ \text{ Determine FF for the first time:} D^0 \to K(1270)^- \nu_e, D^+ \to \overline{K}_1(1270)^0 e^+ \nu_e, D^+ \to \eta' \mu^+ \nu_{\mu}, D^0 \to a_0(980)^- e^+ \nu_e, D^+ \to a_0(980)^0 e^+ \nu_e$
- > $|V_{cd(s)}|$ with SL $D^{0(+)}$ decays in electron channels are expected to reach to 0.5%.

Quantum correlation of neutral charmed meson pairs

Decay mode	Quantities	Status (2.93 fb ⁻¹)
$K_S^0 \pi^+ \pi^-$	C _i , S _i	Finished(2020)
$K_S^0 K^+ K^-$	C _i , S _i	Finished(2021)
$K^-\pi^+\pi^+\pi^-$	<i>R</i> ,δ	Finished(2020)
$K^+K^-\pi^+\pi^-$	$F_+ \text{ or } c_i, s_i$	F_+ Finished(2022), c_i , s_i on going
$\pi^+\pi^-\pi^+\pi^-$	$F_+ \text{ or } c_i, s_i$	F_+ Finished(2022), c_i , s_i on going
$K^-\pi^+\pi^0$	<i>R</i> ,δ	Finished(2021)
$K_S^0 K^{\pm} \pi^{\mp}$	<i>R</i> ,δ	On going
$\pi^+\pi^-\pi^0$	F_+	On going
$K_S^0 \pi^+ \pi^- \pi^0$	$F_+ \text{ or } c_i, s_i$	F_+ Finished(2023), c_i , s_i on going
$K^+K^-\pi^0$	F_+	On going
$K^-\pi^+$	δ	Updated Finished (2022)

- Making progress in past few years.
- Many ongoing projects, eventually 20 fb⁻¹ $\psi(3770)$ data samples.

Amplitude analyses and branching fraction measurement of charmed meson hadronic decays

Precisely measuring the structure of golden modes, for example $D^+ \rightarrow K^- \pi^+ \pi^+$ First amplitude analysis of Cabbibo-suppressed decays. **Measuring the polarization of** $D \rightarrow VV$ in $D \rightarrow K3\pi$ or $D \rightarrow KK\pi\pi$

Searching for new physics and rare decays

Flavor changing neutral currents (FCNC) $e^+e^-, \mu^+\mu^-$ etc. Quantum number violation processes $e^+e^+, \mu^-\mu^-$ etc. Radiative decays $\gamma\omega, \gamma K_1$ etc.

Thanks for your attention