DiPion light-cone distribution amplitudes and the semileptonic decays of $D_s^{(*)}$

Shan Cheng

Hunan University

The CEPC workshop on Flavor Physics, New Physics and Detector Techonologies, Aug 17, 2023, Fudan University

arXiv:2307.02309, 2003.06797

Overview

DiPion

Light-cone distribution amplitudes Double expansion and the coefficient $B_{nl}^{(I)}(s)$

DiPion(DiKaon) LCDAs in $D_s^{(*)}$ weak decay $D_s \rightarrow (f_0 \rightarrow) [\pi^+\pi^-]_{\rm S} e^+ \nu_e$ D_s^* weak decay

Conclusion

DiPion

Why DiPion ?

- CKM matrix is a crucial criterion of the Standard Model[PDG 2022]
- long standing $|V_{ub}|$ tension
- $\dagger~~|V_{ub}|=(3.82\pm0.20) imes10^{-3}$, mainly extracted from $B o X_u l
 u$ and $B o \pi l
 u$
- † $|V_{ub}|_{\rm incl} = (4.13 \pm 0.25) \times 10^{-3}, |V_{ub}|_{\rm excl} = (3.70 \pm 0.16) \times 10^{-3}, \sim 2.5\sigma$
- † enlarge the set of exclusive processes to determine $|V_{ub}|$, a candidate is $B \rightarrow \rho l \nu$ $\triangle \rho$ is reconstructed by $\pi \pi$ invariant mass spectral, width effect/nonresonant contribution ? \triangle the underlying consideration is $B \rightarrow \pi \pi l \bar{\nu}_l (B_{l4})$ [Faller 2014]
- V_{cs} issue
- $|V_{cs}| = 0.975 \pm 0.006$, mainly extracted from the (semi)leptonic $D_{(s)}$ decays
- † $|V_{cs}| = 0.972 \pm 0.007, \ |V_{cs}| = 0.984 \pm 0.012, \ \sim 1.5\sigma$ derivation
- $^{+}$ $\sim 3\sigma$ tension two years ago, 0.939 \pm 0.038 and 0.992 \pm 0.012
- [†] new channels like semileptonic $D_s^{(*)}$ decays are highly anticipated \triangle problems encountered, $D_s \rightarrow f_0 l \nu$ has large uncertainty due to the width and complicate structure $\triangle D_s^* \rightarrow \phi l \nu$
- R_{D^*} anomaly, $B
 ightarrow D^*$ form factors, $D\pi$ system \cdots

• Chiral-even LC expansion with gauge factor [x,0][Polyakov 1999, Diehl 1998]

$$\langle \pi^{a}(k_{1})\pi^{b}(k_{2})|\overline{q}_{f}(zn)\gamma_{\mu}\tau q_{f'}(0)|0\rangle = \kappa_{ab}\,k_{\mu}\int dx\,e^{iuz(k\cdot n)}\,\Phi_{\parallel}^{ab,ff'}(u,\zeta,k^{2})$$

 $\triangle n^2 = 0$, \triangle index f, f' respects the (anti-)quark flavor, $\triangle a, b$ indicates the electric charge \triangle coefficient $\kappa_{+-/00} = 1$ and $\kappa_{+0} = \sqrt{2}$, $\triangle k = k_1 + k_2$ is the invariant mass of dipion state $\triangle \tau = 1/2, \tau^3/2$ corresponds to the isoscalar and isovector 2π DAs,

m riangle higher twist $\propto 1, \gamma_{\mu}\gamma_{5}$ have not been discussed yet, γ_{5} vanishes due to P-parity conservation

† Three independent kinematic variables

 \triangle momentum fraction z carried by anti-quark with respecting to the total momentum of DiPion state,

 \triangle longitudinal momentum fraction carried by one of the pions $\zeta = k_1^+/k^+$, $2q \cdot \bar{k} (\propto 2\zeta - 1)$ $\triangle k^2$

† Normalization conditions

$$\int_{0}^{1} \Phi_{\parallel}^{\ell=1(0)}(u,\zeta,k^{2}) = (2\zeta-1)F_{\pi}(k^{2})$$
$$\int_{0}^{1} dz (2z-1)\Phi_{\parallel}^{\ell=0}(z,\zeta,k^{2}) = -2M_{2}^{(\pi)}\zeta(1-\zeta)F_{\pi}^{\text{EMT}}(k^{2})$$

• $2\pi \text{DAs}$ is decomposed in terms of $C_n^{3/2}(2z-1)$ and $C_\ell^{1/2}(2\zeta-1)$

$$\begin{split} \Phi^{I=1}(z,\zeta,k^2,\mu) &= 6z(1-z) \sum_{n=0,\text{even}}^{\infty} \sum_{l=1,\text{odd}}^{n+1} B_{n\ell}^{I=1}(k^2,\mu) C_n^{3/2}(2z-1) C_\ell^{1/2}(2\zeta-1) \\ \Phi^{I=0}(z,\zeta,k^2,\mu) &= 6z(1-z) \sum_{n=1,\text{odd}}^{\infty} \sum_{l=0,\text{even}}^{n+1} B_{n\ell}^{I=0}(k^2,\mu) C_n^{3/2}(2z-1) C_\ell^{1/2}(2\zeta-1) \end{split}$$

• $B_{n\ell}(k^2,\mu)$ have similar scale dependence as the a_n of π,ρ,f_0 mesons

$$B_{n\ell}(k^2, \mu) = B_{n\ell}(k^2, \mu_0) \left[\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} \right]^{[\gamma_n^{(0)} - \gamma_0^{(0)}]/[2\beta_0]}$$
$$\gamma_n^{\perp(\parallel),(0)} = 8C_F\left(\sum_{k=1}^{n+1} \frac{1}{k} - \frac{3}{4} - \frac{1}{2(n+1)(n+2)} \right)$$

- Watson theorem of π - π scattering amplitudes
 - \triangle implies an intuitive way to express the imaginary part of $2\pi DAs$
 - \triangle leads to the Omnés solution of N-subtracted dispersion relation for the coefficients

$$B_{n\ell}^{l}(k^{2}) = B_{n\ell}^{l}(0) \operatorname{Exp}\left[\sum_{m=1}^{N-1} \frac{k^{2m}}{m!} \frac{d^{m}}{dk^{2m}} \ln B_{n\ell}^{l}(0) + \frac{k^{2N}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{\delta_{\ell}^{l}(s)}{s^{N}(s-k^{2}-i0)}\right]$$

 \bigtriangleup 2 π DAs in a wide range energies is given by δ_ℓ^I and a few subtraction constants

• Soft pion theorem relates the chirarlly even coefficients with a_n^{π}

$$\sum_{\ell=1}^{n+1} B_{n\ell}^{\parallel,\ell=1}(0) = a_n^{\pi}, \quad \sum_{\ell=0}^{n+1} B_{n\ell}^{\parallel,\ell=0}(0) = 0$$

• 2π DAs relate to the skewed parton distributions (SPDs) by crossing \triangle express the moments of SPDs in terms of $B_{nl}(k^2)$ in the forward limit as

$$M_{N=\mathrm{odd}}^{\pi} = \frac{3}{2} \frac{N+1}{2N+1} B_{N-1,N}^{\prime=1}(0), \quad M_{N=\mathrm{even}}^{\pi} = 3 \frac{N+1}{2N+1} B_{N-1,N}^{\prime=0}(0)$$

- In the vicinity of the resonance, $2\pi {\rm DAs}$ reduce to the DAs of $\rho/f_{\rm 0}$

 \bigtriangleup relation between the $a_n^{
ho}$ and the coefficients $B_{n\ell}$

$$a_n^{\rho} = B_{n1}(0) \operatorname{Exp}\left[\sum_{m=1}^{N-1} c_m^{n1} m_{\rho}^{2m}\right], \quad c_m^{(n1)} = \frac{1}{m!} \frac{d^m}{dk^{2m}} \left[\ln B_{n1}(0) - \ln B_{01}(0)\right]$$

 Δf_{ρ} relates to the imaginary part of $B_{nl}(m_{\rho}^2)$ by $\langle \pi(k_1)\pi(k_2)|\rho \rangle = g_{\rho\pi\pi}(k_1 - k_2)^{\alpha}\epsilon_{\alpha}$

$$f_{\rho}^{\parallel} = \frac{\sqrt{2}\,\Gamma_{\rho}\,\mathrm{Im}B_{01}^{\parallel}(m_{\rho}^{2})}{g_{\rho\pi\pi}}, \quad f_{\rho}^{\perp} = \frac{\sqrt{2}\,\Gamma_{\rho}\,m_{\rho}\,\mathrm{Im}B_{01}^{\perp}(m_{\rho}^{2})}{g_{\rho\pi\pi}\,f_{2\pi}^{\perp}}$$

The subtraction constants of B_{nℓ}(s)[Polyakov 1999, SC 2019, SC 2023]

(nl)	$B_{n\ell}^{\parallel}(0)$	$c_1^{\parallel,(nl)}$	$\frac{d}{dk^2} \ln B_{n\ell}^{\parallel}(0)$	$B_{n\ell}^{\perp}(0)$	$c_1^{\perp,(nl)}$	$\frac{d}{dk^2} \ln B_{n\ell}^{\perp}(0)$
(01) (21) (23)	$\begin{array}{c} 1 \\ -0.113 \rightarrow 0.218 \\ 0.147 \rightarrow -0.038 \end{array}$	0 -0.340 0	$\begin{array}{c} 1.46 \rightarrow 1.80 \\ 0.481 \\ 0.368 \end{array}$	$\begin{array}{c} 1 \\ 0.113 \rightarrow 0.185 \\ 0.113 \rightarrow 0.185 \end{array}$	0 -0.538 0	$\begin{array}{ccc} 0.68 & \to & 0.60 \\ & -0.153 \\ & 0.153 \end{array}$
(10) (12)	$\begin{array}{rrr} -0.556 & \to -0.300 \\ 0.556 & \to 0.300 \end{array}$	-	$\begin{array}{ccc} 0.413 & \to 0.375 \\ 0.413 & \to 0.375 \end{array}$	-	-	- -

 \bigtriangleup firstly studied in the effective low-energy theory based on instanton vacuum

- · Above discussions are all at leading twist level
- Subleading twist LCDAs are still in lack
- but non-negligible even important in the decays of heavy flavor hadrons

DiPion LCDAs in D_s weak decay DiKaon LCDAs in D_s^* weak decay

$D_s \rightarrow (f_0 \rightarrow) [\pi \pi]_{\rm S} e^+ \nu_e$

• Semileptonic $D_{(s)}$ decays provide a clean environment to study scalar mesons $\Delta D_{(s)} \rightarrow a_0 e^+ \nu$ [BESIII 18, 21], $D^+ \rightarrow f_0 / \sigma e^+ \nu$ [BESIII 19], $D_s \rightarrow f_0 (\rightarrow \pi^+ \pi^-) e^+ \nu$ [CLEO 09] $\Delta B \text{ of } D_s \rightarrow f_0 (\rightarrow \pi^0 \pi^0, K_s K_s) e^+ \nu$ [BESIII 22], $D_s \rightarrow f_0 (\rightarrow \pi^+ \pi^-) e^+ \nu$ form factor[BESIII 23]

$$\begin{split} \mathcal{B}(D_s \to f_0(\to \pi^0 \pi^0) e^+ \nu) &= (7.9 \pm 1.4 \pm 0.3) \times 10^{-4} \\ \mathcal{B}(D_s \to f_0(\to \pi^+ \pi^-) e^+ \nu) &= (17.2 \pm 1.3 \pm 1.0) \times 10^{-4} \end{split}$$

 \triangle isospin symmetry expectation $\mathcal{B}(f_0 \to \pi^+\pi^-)/\mathcal{B}(f_0 \to \pi^0\pi^0) = 2$, possible ρ^0 pollution $\triangle f_+^{f_0}(0)|_{V_{CS}}| = 0.504 \pm 0.017 \pm 0.035$

- Theoretical consideration $\frac{d\Gamma(D_s^+ \to f_0 l^+ \nu)}{dq^2} = \frac{G_F^2 |V_{cs}|^2 \lambda^{3/2} (m_{D_s}^2, m_{f_0}^2, q^2)}{192 \pi^3 m_{D_s}^3} |f_+(q^2)|^2$
- Observed in the $\pi\pi$ invariant mass spectral, improvement with the width effect

$$\begin{split} \frac{d\Gamma(D_s^+ \to [\pi\pi]_{\rm S} \ l^+\nu)}{dsdq^2} &= \frac{1}{\pi} \frac{G_F^2 |V_{c\rm S}|^2}{192\pi^3 m_{D_{\rm S}}^3} |f_+(q^2)|^2 \frac{\lambda^{3/2}(m_{D_{\rm S}}^2, s, q^2) \ g_1^2 \beta_\pi(s)}{|m_{\rm S}^2 - s + i} \\ &\frac{d^2 \Gamma(D_s^+ \to [\pi\pi]_{\rm S} \ l^+\nu)}{dk^2 dq^2} = \frac{G_F^2 |V_{c\rm S}|^2}{192\pi^3 m_{D_{\rm S}}^3} \frac{\beta_{\pi\pi}(k^2) \sqrt{\lambda_{D_{\rm S}}} q^2}{16\pi} \sum_{\ell=0}^{\infty} 2|F_0^{(\ell)}(q^2, k^2)|^2 \end{split}$$

• $D_s
ightarrow f_0$ ffs to $D_s
ightarrow [\pi\pi]_{
m S}$ ffs

[Hambrock 2015, SC 2017,19,20, Descotes-Genon 2019,23] in B(s) cases

$D_s \rightarrow (f_0 \rightarrow) [\pi \pi]_{\mathrm{S}} e^+ \nu_e$

• Definitions of $D_s \rightarrow f_0$ form factors

$$\langle f_0(p_1) | \bar{s} \gamma_\mu \gamma_5 c | D_s^+(p) \rangle = -i \left[f_+(q^2) (p + p_1)_\mu + f_-(q^2) q_\mu \right]$$

Form factor and the differential decay width [SC 2023]

 $\triangle M^2 = 5.0 \pm 0.5 \text{ GeV}^2$ and $s_0 = 6.0 \pm 0.5 \text{ GeV}^2$, $\triangle \tilde{f}_{f_0} = 335 \text{ MeV}$, much larger than 180 MeV used in the previous LCSRs, $\triangle a_1^{s/\sigma}$ term contributions are considered for the first time , $\triangle f_0$ is not a pure $\bar{s}s$ state, the mixing angle is chosen at $20^\circ \pm 10^\circ$

$D_s \to [\pi\pi]_{\rm S} \, e^+ \nu_e$

• Definitions of $D_s
ightarrow [\pi\pi]_{
m S}$ form factors

 $\langle [\pi(k_1)\pi(k_2)]_{\rm S} | \bar{s}\gamma_{\mu}(1-\gamma_5)c|D_s^+(p)\rangle = -iF_t(q^2,s,\zeta)k_{\mu}^t - iF_0(q^2,s,\zeta)k_{\mu}^0 - iF_{\parallel}(q^2,s,\zeta)k_{\mu}^{\parallel}$

• Form factor and the differential decay width at leading twist [SC 2023]

- subleading twist LCDAs give dominate contribution in $D_s
 ightarrow [\pi\pi]_{
 m S}$ transition
- shows relatively moderate evolution with larger allowed momentum transfer
- further measurements would help us to understand the dipion system, $ho, {\it f}_0$
- different in B/Z case where the leading twist is dominate/overwhelming

DiPion LCDAs in D_s weak decay DiKaon LCDAs in D_s^* weak decay

- $\alpha_s : \alpha : G_F \sim \mathcal{O}(1) : \mathcal{O}(1/137) : \mathcal{O}(10^{-5})$
- very hard to measure weak decay from strong and EM interactions
- the total widths of heavy-light vector mesons are still in lack[PDG 2022] $\bigtriangleup \Gamma_{D^{*+}} = 84.3 \pm 1.8 \, \mathrm{keV} \, (\rightarrow D^0 \pi^+, D^+ \pi^0, D^+ \gamma) \\ \bigtriangleup \Gamma_{D^{*0}} < 2.1 \, \mathrm{MeV} \, (\rightarrow D^0 \pi^0, D^0 \gamma), \quad \Gamma_{D^{*+}_s} < 1.9 \, \mathrm{MeV} \, (\rightarrow D^+_s \gamma, D^+_s \pi^0, D^+_s e^+ e^-) \\ \bigtriangleup \Gamma_{B^*}, \Gamma_{B^*_s} \text{ no measurement}$
- but important to properties and $g_{D_s^*D_s\gamma}
 ightarrow$ non-perturbative approaches

	$g_{D^{*+}D^+\gamma}$ (GeV ⁻¹)	$g_{D^{*0}D^{0}\gamma}$ (GeV ⁻¹)	$g_{D_s^{*+}D_s^+\gamma}$ (GeV ⁻¹)
this work	$-0.15\substack{+0.11\\-0.10}$	$1.48^{+0.29}_{-0.27}$	$-0.079^{+0.086}_{-0.078}$
$HH\chi PT$ [24]	-0.27 ± 0.05	2.19 ± 0.11	0.041 ± 0.056
HQET+VMD [35]	$-0.29\substack{+0.19\\-0.11}$	$1.60\substack{+0.35\\-0.45}$	$-0.19\substack{+0.19\\-0.08}$
HQET+CQM [71]	$-0.38\substack{+0.05\\-0.06}$	1.91 ± 0.09	-
Lattice QCD [32]	-0.2 ± 0.3	2.0 ± 0.6	-
LCSR [21]	-0.50 ± 0.12	1.52 ± 0.25	-
QCDSR [20]	$-0.19\substack{+0.03\\-0.02}$	0.62 ± 0.03	-0.20 ± 0.03
RQM [72]	-0.44 ± 0.06	2.15 ± 0.11	-0.19 ± 0.03
experiment [16–18]	-0.47 ± 0.06	1.77 ± 0.03	-

LCSRs, hadronic photon NLO[Li 2020]

LCSRs, LP NLO corrections [Pullin 2021] $g_{D_s^*D_s\gamma} = 0.60^{+0.19}_{-0.18}$

very sensitive to different contributions (radiative corrections, power corrections) a benchmark to probe the involved dynamics

• impressive lattice QCD evaluation[HPQCD 2013] $\Gamma_{D_s^{*+}}^{HPQCD} = 0.070(28) \text{ keV}$ \triangle the longest-lived charged vector meson \triangle encourage us to study the exclusive D_s^* weak decay

- D_s^* weak decay are highly anticipated to determine $|V_{cs}|$
- leptonic decays, helicity enhanced $D_s^* \rightarrow l \nu$, $|V_{cs}| f_{D_s^*}$

$$\Gamma_{D_s^* \to l\nu} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 m_{D_s^*}^3 \left(1 - \frac{m_l^2}{m_{D_s^*}^2}\right) \left(1 + \frac{m_l^2}{m_{D_s^*}^2}\right) = 2.44 \times 10^{-12} \,\mathrm{GeV}$$

$$\Delta \mathcal{B}(D_s^* \to \mu\nu) = \frac{\Gamma_{D_s^* \to \mu\nu}}{\Gamma_{D_s^*}} \sim \frac{\Gamma_{D_s \to \mu\nu}}{\Gamma_{D_s^*}} \frac{2m_{D_s^*}^2}{3m_{\mu}^2} \sim 2 \times 10^{-5}, \text{ close to the LQCD[HPQCD 2013]}$$

 \triangle the most favored modes, $\left(2.1^{+1.3}_{-0.9}\right) \times 10^{-5}$ [2304.12159 BESIII]

 \bigtriangleup confirms the total width of D_s^* but need more precise lattice evaluation

• semileptonic decays, $D_s^* \rightarrow \phi l \nu$, $|V_{cs}|$ and helicity form factors

 \triangle heavy quark symmetry (HQS) has been examined in $\overline{B} \rightarrow D^*(D) l \overline{\nu}$, also in $D_s^*(D_s) \rightarrow \phi l^+ \nu$? \triangle lepton flavour university (LFU) in vector charm sector

- hadronic decays $D_s^* \to \phi \rho, \phi \pi$, factorisation theo. or topological analysis
- inclusive decays, $D_s^*
 ightarrow X_s l
 u$, HQET and reliability of power expansion

- LCSRs parameters $s_0 = 6.8 \pm 1.0 \text{ GeV}^2$, $M^2 = 4.50 \pm 1.0 \text{ GeV}^2$
- Wigner-Eckart theorem: the helicity information at endpoint is only governed by the Clebsch-Gordan coefficients [Hiller 2014, Grattrex 2016, Hiller 2021]

• semileptonic decays $D_s^* \rightarrow \phi I \nu_I$

$$\begin{split} \frac{d\Gamma_{ij}(q^2)}{dq^2} &= \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s^*}^3} \lambda^{1/2} (m_{D_s^*}^2, m_{\phi}^2, q^2) \, q^2 \, |H_{ij}(q^2)|^2 \\ \Gamma_{D_s^* \to \phi |\nu_l} &= \frac{1}{3} \, \int_0^{q_0^2} dq^2 \sum_{i,j=0,\pm} \frac{d\Gamma_{ij}(q^2)}{dq^2} = \left(3.28^{+0.82}_{-0.71}\right) \times 10^{-14} \, \text{GeV} \end{split}$$

 \bigtriangleup DiKaon LCDAs and the width effect in $D_s^* \to \phi$ transition

hadronic decays (naive factorisation)

$$\begin{aligned} \mathcal{A}(D_{s}^{*+} \to \phi\pi^{+}) &= (-i)\frac{G_{F}}{\sqrt{2}}V_{cs} a_{1} m_{\pi} f_{\pi} \sum_{i=0,\pm} H_{0j}(m_{\pi}^{2}) \\ \mathcal{A}(D_{s}^{*+} \to \phi\rho^{+}) &= \frac{G_{F}}{\sqrt{2}}V_{cs} a_{1} m_{\rho} f_{\rho}^{\parallel}(\perp) \sum_{i,j} H_{ij}(m_{\rho}^{2}) \\ \triangle a_{1}(\mu) &= 0.999, f_{\pi} = 0.130 \text{ GeV}, f_{\rho}^{\parallel} &= 0.210 \text{ GeV} \\ \triangle \Gamma_{D_{s}^{*+} \to \phi\pi^{+}} &= \left(3.81^{+1.52}_{-1.33}\right) \times 10^{-14} \text{ GeV}, \quad \Gamma_{D_{s}^{*+} \to \phi\rho^{+}} &= \left(1.16^{+0.42}_{-0.39}\right) \times 10^{-13} \text{ GeV} \\ \triangle \text{ the result of } \phi\pi \text{ channel is marginally consistent with the PQCD[Yang 2022]} \end{aligned}$$

• with the lattice evaluation of $\Gamma_{D_s^*} = (0.70 \pm 0.28) \times 10^{-8} \text{ GeV}_{[\text{HPQCD 2013}]}$ [SC 2022] $\mathcal{B}(D_s^* \to l\nu) = (3.49 \pm 1.40) \times 10^{-5}$, $\mathcal{B}(D_s^* \to \phi l\nu) = (0.47 \stackrel{+0.12}{-0.10} \pm 0.19) \times 10^{-6}$ $\mathcal{B}(D_s^{*+} \to \phi \pi^+) = (0.54 \stackrel{+0.22}{-0.19} \pm 0.22) \times 10^{-6}$, $\mathcal{B}(D_s^{*+} \to \phi \rho^+) = (1.65 \stackrel{+0.61}{-0.56} \pm 0.66) \times 10^{-6}$

Belle II clear background

 \triangle 2022, 400 fb⁻¹, reconstruct 2 × 10⁵ data samples of $D_s^*(D_s)$ from $\phi\pi$ channel \triangle phase 3 running (2024-2026), 10 ab⁻¹, $\mathcal{O}(1 \times 10^7)$ data sample of $D_s^*(D_s)$ \triangle the number of D_s^* production is $\mathcal{O}(10^9) \iff \mathcal{B}(D_s \to \phi\pi) = (4.5 \pm 0.4)\%$

- ightarrow excellent potential to study the D_s^* weak decays, 50 ab $^{-1}$ is hottest expected
- LHCb excellent particle identification to distinguish K, π and μ
 Δ the channel D^{*}_s → φ(KK)π with the D^{*}_s producing by B_s → D^{*}_sμν

BESIII low background

 \triangle directly produced from e^+e^- collision at the $D_sD_s^*$ threshold

- \bigtriangleup have collected $\sim 6 \times 10^6~D_s^*$ mesons with the $3.2\,{\rm fb}^{-1}$ data at 4.178 GeV
- \bigtriangleup provides the good chance for the leptonic decay $D_s^* \to l \nu$, Statistical error
- \triangle first \mathcal{B} measurement [2304.12159], determination of spin and parity [2305.14631]

 $D_{s}^{(*)}$ weak decay

	Particle	Tera-Z	Belle II	LHCb	
CEPC CDR	b hadrons				
	B^+	6×10^{10}	$3\times 10^{10}~(50~{\rm ab^{-1}}$ on $\Upsilon(4S))$	3×10^{13}	
	B^0	6×10^{10}	$3 imes 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$	
	B_s	2×10^{10}	$3 imes 10^8$ (5 ab^{-1} on $\Upsilon(5S)$)	$8 imes 10^{12}$	
	b baryons	1×10^{10}		1×10^{13}	
	Λ_b	1×10^{10}		1×10^{13}	
	c hadrons				
	D^0	2×10^{11}			
CEPC (4×Tera-Z)	D^+	6×10^{10}	- BESIII $\mathcal{O}(10^6)$	D_{+}^{+}/D_{+}^{*+}	
2.2×10^{10}	D_s^+	$3 imes 10^{10}$	$\begin{array}{c} Bollo \parallel \mathcal{O}(10^9) \\ \end{array}$	י פ <i>ין א</i> י אין א	
0.0 × 10	Λ_c^+	2×10^{10}	$= Delie ii O(10) D_s / D_s pro$		
	τ^+	$3 imes 10^{10}$	$5\times 10^{10}~(50\mathrm{ab^{-1}}$ on $\Upsilon(4S))$		

Table 2.4: Collection of expected number of particles produced at a tera-Z factory from 10^{12} Z-boson decays. We have used the hadronization fractions (neglecting p_r dependencies) from Refs. [431, 432] (see also Ref. [431]). For the decays relevant to this study we also show the corresponding number of particles produced by the full 50 ab^{-1} on $\Upsilon(4S)$ and 5 ab^{-1} on $\Upsilon(5S)$ runs at Belle II [430], so the decays relevant S_{10} or $\Gamma(4S)$ and 5 ab^{-1} on $\Upsilon(5S)$ runs at Belle II [430], as well as the numbers of b hadrons at LHCD with 50 b^{-1} (using the number of $b\bar{b}$ pairs within the LHCD detector acceptance from (435) and the hadronization fractions from [431]).

Conclusion

• DiPion (DiKaon) structure in LCDAs

 \triangle width effect of ρ, ϕ, f_0 in CKM determinations and anomalies study \triangle could be studied in heavy flavors and Z decays at CEPC

• $D_s^{(*)}$ weak decay

 \triangle semileptonic D_s decay provides clean environment to study scale meson and (subleading twist) DiPion LCDAs $\triangle D_s^*$ provides the opportunity of first measurement of weak decay of vector meson and further more physics

Thank you for your patience.