

T-Odd CP Violation

Qin Qin

Huazhong University of Science and Technology

arXiv: 2211.07332 Collaborated with J.P.Wang, F.S.Yu

CEPC味物理-新物理和相关探测技术研讨会 **13-18 Aug. 2023, Shanghai**

Highlights of Flavor Physics

- **CP** violation
 - **Discovery:** Mixing-induced CPV observed in Kaon decays

[Christenson, Cronin, Fitch, Turlay, '64]

- The Kobayashi-Maskawa mechanism
- Direct CPV discovered in B meson decays

CKM: Measurements of fundamental parameters of nature \bullet

Cronnin Fitch [Nobel Prize for Physics in 1980]

[Kobayashi, Maskawa, '73]

[BaBar & Belle, '01]

Kobayashi Maskawa [Nobel Prize for Physics in 2008]

Why still Flavor Physics?

- Unanswered questions.
- Precision test of the standard model \Rightarrow new dynamics
- What else can be do except improve the precision?
- New facilities (BESIII, Belle II, upgrading LHCb, CEPC)! New opportunities!
 - Release new channels & new observables
- Never forget a bunch of new particles — baryons!

Mesonic flavor physics \rightarrow **Mesonic & Baryonic flavor physics**!

3

Huge opportunities for baryon

Particle	BESIII	Belle II	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
$B^0,ar{B}^0$	-	$5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$	$4.8 imes 10^{11}$
B^{\pm}	_	$5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$	$4.8 imes10^{11}$
$B^0_s,ar{B}^0_s$	-	$6.0 \times 10^8 \ (5 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(5S))$	$1 imes 10^{13}$	$1.2 imes 10^{11}$
B_c^{\pm}	-	-	1×10^{11}	$7.2 imes10^8$
$\Lambda^0_b, ar{\Lambda}^0_b$	-	-	$2 imes 10^{13}$	1×10^{11}
$D^0,ar{D}^0$	$1.2 imes 10^8$			$5.2 imes10^{11}$
D^{\pm}	$1.2 imes 10^8$			$2.2 imes10^{11}$
D_s^{\pm}	1×10^7			$8.8 imes10^{10}$
Λ_c^\pm	$0.3 imes10^7$			$5.5 imes10^{10}$
$ au^{\pm}$	$3.6 imes 10^8$	$4.5 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$		$1.2 imes 10^{11}$

No reason to spare the prairie!

Huge opportunities for baryon

Same heavy quark: Remeasurements and retests of the mesonic version

Important but not fully satisfactory

• Different spectator \Rightarrow **Principle differences**

- Different power counting in baryon decays (to probe QCD)
- Sensitive to different (non-)standard operators

Polarization induced observables

- Spins/Polarizations/Helicities of baryons provide fruitful observables.
- Lee-Yang parameters: α , β , γ

$$A(\Lambda^0 \to p\pi) = \bar{u}_p(S + P\gamma_5$$

Theoretically, they are expressed by **partial wave amplitudes** (helicity amplitudes $h_{+} = S \pm P$) as:

$$\alpha = \frac{2Re(S^*P)}{|S|^2 + |P|^2}, \quad \beta = \frac{2Im(S^*P)}{|S|^2 + |P|^2}, \quad \gamma =$$

Experimentally, they are measured by **proton polarizations**:

$$P_p = \frac{(\alpha + \cos \theta)\hat{p} + \beta\hat{p} \times \hat{s} + \gamma(\hat{p})}{1 + \alpha \cos \theta}$$

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

 $)u_{\Lambda}$

$ S ^2 -$	$ P ^2$
$ S ^{2} +$	$ P ^2$

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha\cos\theta$$

 $\hat{p} \times \hat{s} \times \hat{p}$

Spin measurements are difficult!

Key point: particle spins are encoded in their decay products.

Polarization induced observables

- Build spin-dependent CP violation observables, e.g., $\alpha + \bar{\alpha}$, $\gamma \bar{\gamma}$.
- With entangled $\Xi^-\bar{\Xi}^+$ and $\Xi^- \to \Lambda \pi^- \to p2\pi^-$, BESIII measure the Lee-Yang parameters and their induced CPV

[BESIII, Nature 2022]

$$= A_{1}e^{i\phi_{1}}e^{i\delta_{1}} + A_{2}e^{i\phi_{2}}e^{i\delta_{2}} = A_{1}e^{i\phi_{1}}e^{i\delta_{1}}(1 + re^{i\phi}e^{i\delta})$$

$$= A_{1}e^{-i\phi_{1}}e^{i\delta_{1}} + A_{2}e^{-i\phi_{2}}e^{i\delta_{2}} = A_{1}e^{-i\phi_{1}}e^{i\delta_{1}}(1 + re^{-i\phi}e^{i\delta_{2}})$$

$$\propto 2r\sin\phi\sin\delta$$

Angular distribution \Rightarrow spin/helicity \Rightarrow strong phase!

Polarization induced observables

- Application to more channels with Cascade decays (e.g. $\Lambda_h \to \Lambda V \to p3\pi$)
 - 1. Angular distribution encodes the **helicity amplitudes**
 - 2. They induce CPVs with different strong phase dependences
- Strong phase dependence: $\sin \delta_s$ vs $\cos \delta_s$

[Geng, Liu, Wei, et al, 2106.10628,2109.09524,2206.00348;Zhou, et al, 2210.15357]

- Whatever the strong phase is, either $|\sin\delta|$ or $\cos \delta$ would be larger than 0.7.
- If both of CPVs are measured, the strong phase can be determined.

 General conclusion: <u>T-odd correlation</u> strong phases

$$TQ_{-} = -Q_{-}T, \qquad A_{CP}^{Q_{-}} \equiv \frac{\langle Q_{-} \rangle - \langle \bar{Q}_{-} \rangle}{\langle Q_{-} \rangle + \langle \bar{Q}_{-} \rangle} \propto \cos \delta_{s}$$

if it satisfies two conditions: (i) for the final-state basis { $|\psi_n\rangle$, n =1,2,...}, there is a unitary transformation U, s.t. $UT |\psi_n\rangle = e^{-i\alpha} |\psi_n\rangle$; (2) $UQ_-U^{\dagger} = Q_-$.

[Wang, **QQ**, Yu, 2211.07332]

General conclusion: T-odd correlation Q_{-} induces CPV with cosine dependence on

$$\begin{split} \langle \psi_m | Q_- | \psi_n \rangle &= \langle \psi_m | \mathcal{T}^{\dagger} \mathcal{T} | Q_- | \psi_n \rangle^* \\ &= - \langle \psi_m | \mathcal{T}^{\dagger} Q_- \mathcal{T} | \psi_n \rangle^* \\ &= - \langle \psi_m | \mathcal{T}^{\dagger} | \mathcal{U}^{\dagger} \mathcal{U} | Q_- | \mathcal{U}^{\dagger} \mathcal{U} | \mathcal{T} | \psi_n \rangle^* \\ &= - \langle \psi_m | \mathcal{T}^{\dagger} \mathcal{U}^{\dagger} | Q_- | \mathcal{U} \mathcal{T} | \psi_n \rangle^* \\ &= - \langle \psi_m | Q_- | \psi_n \rangle^* , \end{split}$$

 $A_{CP}^{Q_{-}} \propto \sin \delta_{w} \cos \delta_{s}$

 $A_{CP}^{Q_+} \propto \sin \delta_w \sin \delta_s$

• Example 1. Triple product $Q_1 \equiv (\vec{s}_1 \times \vec{s}_2) \cdot \hat{p}$ in $P \to P_1 P_2$ $T: \overrightarrow{p} \to -\overrightarrow{p}, h \to h; \qquad U$ $T: Q_1 \to -Q_1;$ U

• Example 2. Triple product $Q_p \equiv (\hat{p}_1 \times$ $T: \overrightarrow{p} \to -\overrightarrow{p};$ *U* = $T: Q_p \to -Q_p;$ U =

$$I = R(\pi) : -\overrightarrow{p} \to \overrightarrow{p}, h \to h$$

$$= R(\pi) : Q_1 \to Q_1$$

$$\hat{p}_2$$
) $\cdot \hat{p}_3$ in $P \rightarrow P_1 P_2 P_3 P_4$

$$= P : - \overrightarrow{p} \to \overrightarrow{p}$$
$$= P : Q_p \to - Q_p$$

condition (i) condition (ii)

[Wang, **QQ**, Yu, 2211.07332]

• For the decay $\Lambda_b \to N^*(1520)K^*$, three such T-odd correlations

Triple product Hepta product **Penta product**

$$Q_{1} \equiv (\vec{s}_{1} \times \vec{s}_{2}) \cdot \hat{p} = \frac{i}{2} (s_{1}^{+} s_{2}^{-} - s_{1}^{-} s_{2}^{+})$$

$$Q_{2} \equiv (\vec{s}_{1} \cdot \hat{p})(\vec{s}_{2} \cdot \hat{p})Q_{1} + Q_{1}(\vec{s}_{1} \cdot \hat{p})(\vec{s}_{2} \cdot \hat{p}) = \frac{i}{2} s_{1}^{z} s_{2}^{z} (s_{1}^{+} s_{2}^{-} - s_{1}^{-} s_{2}^{+}) + \frac{i}{2} (s_{1}^{+} s_{2}^{-} - s_{1}^{-} s_{2}^{+}) s_{1}^{z} s_{2}^{z}$$

$$Q_{3} \equiv (\vec{s}_{1} \cdot \vec{s}_{2})Q_{1} + Q_{1}(\vec{s}_{1} \cdot \vec{s}_{2}) - Q_{2} = \frac{i}{2} (s_{1}^{+} s_{1}^{+} s_{2}^{-} s_{2}^{-} - s_{1}^{-} s_{1}^{-} s_{2}^{+} s_{2}^{+})$$

- Their expectations are imaginary helicity amplitude interferences $\langle Q_3 \rangle = 2\sqrt{3} \operatorname{Im} \left(H_{+1,+\frac{3}{2}} H_{-1,-\frac{1}{2}}^* + H_{-1,-\frac{3}{2}}^* H_{+1,+\frac{1}{2}} \right)$
- Moreover, complementary T-even correlations are found

 $P_1 \equiv \vec{s}_1 \cdot \vec{s}_2 - (\vec{s}_1 \cdot \hat{p})(\vec{s}_2 \cdot \hat{p}), P_2 \equiv (\vec{s}_1 \cdot \hat{p})(\vec{s}_2 \cdot \hat{p})P_1 + P_1(\vec{s}_1 \cdot \hat{p})(\vec{s}_2 \cdot \hat{p}),$ $P_3 \equiv P_1^2 - [\vec{s}_1^2 - (\vec{s}_1 \cdot \hat{p})^2][\vec{s}_2^2 - (\vec{s}_2 \cdot \hat{p})^2] - [(\vec{s}_1 \times \vec{s}_1) \cdot \hat{p}][(\vec{s}_2 \times \vec{s}_2) \cdot \hat{p}]$

[Wang, **QQ**, Yu, 2211.07332]

encoded in angular distribution of secondary decays of $N^*(1520)K^*$

Complementary CP asymmetries can thereby be measured, which depend on $\cos \delta_s \& \sin \delta_s$.

The expectations of the complementary T-odd and T-even correlations are both

$$\begin{aligned} \frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto s_{1}^{2} s_{2}^{2} \left(\left| \mathcal{H}_{+1,+\frac{3}{2}} \right|^{2} + \left| \mathcal{H}_{-1,-\frac{3}{2}} \right|^{2} \right) \\ + s_{1}^{2} \left(\frac{1}{3} + c_{2}^{2} \right) \left(\left| \mathcal{H}_{+1,+\frac{1}{2}} \right|^{2} + \left| \mathcal{H}_{-1,-\frac{1}{2}} \right|^{2} \right) \\ + 2 c_{1}^{2} \left(\frac{1}{3} + c_{2}^{2} \right) \left(\left| \mathcal{H}_{0,-\frac{1}{2}} \right|^{2} + \left| \mathcal{H}_{0,+\frac{1}{2}} \right|^{2} \right) \\ - \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi \qquad \langle \mathcal{Q}_{3} \rangle \\ + \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi \qquad \langle \mathcal{P}_{3} \rangle \\ - \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi \qquad \langle \mathcal{Q}_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad \langle \mathcal{P}_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad \langle \mathcal{P}_{1} + \frac{4 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad \langle \mathcal{P}_{1} + \frac{1 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad \langle \mathcal{P}_{1} + \frac{1 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi \qquad \langle \mathcal{P}_{1} + \frac{1 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+\frac{1}{2} s_{2}} \right) \right) \cos \varphi \qquad \langle \mathcal{P}_{1} + \frac{1 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+\frac{1}{2} s_{2}} \right) \left(\frac{1 s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \right) \right) \right)$$

[Wang, **QQ**, Yu, 2211.07332]

Summary

- Baryonic flavor physics has become more and more important
- Based on the spin/helicity information of baryons, CPV observables can be built with different dependences on strong phases
- We prove that a subset of T-odd and T-even CPVs, are proportional to cos δ_s and sin δ_s .
- They can be extracted from angular distributions of Cascade baryon decays.
- It may help discover the baryonic CPV, and afterwards help determine the strong phase and hence the weak phase.

Thank you!