T－odd CP Violation

Qin Qin

Huazhong University of Science and Technology
arXiv： 2211.07332
Collaborated with J．P．Wang，F．S．Yu
CEPC味物理－新物理和相关探测技术研讨会

13－18 Aug．2Q23，Shanghai

Highlights of Flavor Physics

- CP violation

\Rightarrow Discovery: Mixing-induced CPV observed in Kaon decays
[Christenson, Cronin, Fitch, Turlay, '64]
\Rightarrow The Kobayashi-Maskawa mechanism
[Kobayashi, Maskawa, '73]
\Rightarrow Direct CPV discovered in B meson decays
[BaBar \& Belle, '01]

- CKM: Measurements of fundamental parameters of nature

Why still Flavor Physics?

- Unanswered questions.
- Precision test of the standard model \Rightarrow new dynamics
- What else can be do except improve the precision?
- New facilities (BESIII, Belle II, upgrading LHCb, CEPC)! New opportunities!
\Rightarrow Release new channels \& new observables
- Never forget a bunch of new particles - - baryons!

$$
\text { Mesonic flavor physics } \rightarrow \text { Mesonic \& Baryonic flavor physics! }
$$

Huge opportunities for baryon

Particle	BESIII	Belle II	LHCb $\left(300 \mathrm{fb}^{-1}\right)$	CEPC $(4 \times$ Tera- $Z)$
B^{0}, \bar{B}^{0}	-	$5.4 \times 10^{10}\left(50 \mathrm{ab}^{-1}\right.$ on $\left.\Upsilon(4 S)\right)$	3×10^{13}	4.8×10^{11}
$B^{ \pm}$	-	$5.7 \times 10^{10}\left(50 \mathrm{ab}^{-1}\right.$ on $\left.\Upsilon(4 S)\right)$	3×10^{13}	4.8×10^{11}
$B_{s}^{0}, \bar{B}_{s}^{0}$	-	$6.0 \times 10^{8}\left(5 \mathrm{ab}^{-1}\right.$ on $\left.\Upsilon(5 S)\right)$	1×10^{13}	1.2×10^{11}
$B_{c}^{ \pm}$	-	-	1×10^{11}	7.2×10^{8}
$\Lambda_{b}^{0}, \bar{\Lambda}_{b}^{0}$	-	-	2×10^{13}	1×10^{11}
D^{0}, \bar{D}^{0}	1.2×10^{8}		5.2×10^{11}	
$D^{ \pm}$	1.2×10^{8}		2.2×10^{11}	
$D_{s}^{ \pm}$	1×10^{7}		8.8×10^{10}	
$\Lambda_{c}^{ \pm}$	0.3×10^{7}		5.5×10^{10}	
$\tau^{ \pm}$	3.6×10^{8}	$4.5 \times 10^{10}\left(50 \mathrm{ab}^{-1}\right.$ on $\left.\Upsilon(4 S)\right)$	1.2×10^{11}	

No reason to spare the prairie!

Huge opportunities for baryon

- Same heavy quark: Remeasurements and retests of the mesonic version
\Rightarrow Important but not fully satisfactory
- Different spectator \Rightarrow Principle differences
- Three quarks
\Rightarrow Nonzero baryon number
\Rightarrow Nonzero spin
\Rightarrow Different power counting in baryon decays (to probe QCD)
\Rightarrow Sensitive to different (non-)standard operators
\&

Polarization induced observables

- Spins/Polarizations/Helicities of baryons provide fruitful observables.
- Lee-Yang parameters: α, β, γ

$$
A\left(\Lambda^{0} \rightarrow p \pi\right)=\bar{u}_{p}\left(S+P \gamma_{5}\right) u_{\Lambda}
$$

General Partial Wave Analysis of the
Decay of a Hyperon of Spin $\frac{1}{2}$
T. D. Lee* and C. N. Yang

Institute for Advanced Study, Princeton, New Jersey
(Received October 22, 1957)

Theoretically, they are expressed by partial wave amplitudes (helicity amplitudes $h_{ \pm}=S \pm P$) as:

$$
\alpha=\frac{2 \operatorname{Re}\left(S^{*} P\right)}{|S|^{2}+|P|^{2}}, \quad \beta=\frac{2 \operatorname{Im}\left(S^{*} P\right)}{|S|^{2}+|P|^{2}}, \quad \gamma=\frac{|S|^{2}-|P|^{2}}{|S|^{2}+|P|^{2}}
$$

$\frac{d \Gamma}{d \cos \theta} \propto 1+\alpha \cos \theta$

Experimentally, they are measured by proton polarizations:

$$
P_{p}=\frac{(\alpha+\cos \theta) \hat{p}+\beta \hat{p} \times \hat{s}+\gamma(\hat{p} \times \hat{s}) \times \hat{p}}{1+\alpha \cos \theta}
$$

Spin measurements are difficult!
Key point: particle spins are encoded in their decay products.

Polarization induced observables

- Build spin-dependent CP violation observables, e.g., $\alpha+\bar{\alpha}, \gamma-\bar{\gamma}$.
- With entangled $\Xi^{-} \bar{\Xi}^{+}$and $\Xi^{-} \rightarrow \Lambda \pi^{-} \rightarrow p 2 \pi^{-}$, BESIII measure the Lee-Yang parameters and their induced CPV
[BESIII, Nature 2022]

- Traditional direct CP asymmetry: sine dependence on strong phase.

$$
A_{C P} \equiv \frac{|A|^{2}-|\bar{A}|^{2}}{|A|^{2}+|\bar{A}|^{2}}, \quad \begin{aligned}
& A=A_{1} e^{i \phi_{1}} e^{i \delta_{1}}+A_{2} e^{i \phi_{2}} e^{i \delta_{2}}=A_{1} e^{i \phi_{1}} e^{i \delta_{1}}\left(1+r e^{i \phi} e^{i \delta}\right) \\
& -i \phi_{1} e^{i \delta_{1}}+A_{2} e^{-i \phi_{2}} e^{i \delta_{2}}=A_{1} e^{-i \phi_{1}} e^{i \delta_{1}}\left(1+r e^{-i \phi} e^{i \delta}\right)
\end{aligned}
$$

$A_{C P} \propto 2 r \sin \phi \sin \delta$

$$
\text { Angular distribution } \Rightarrow \text { spin/helicity } \Rightarrow \text { strong phase! }
$$

Polarization induced observables

- Application to more channels with Cascade decays (e.g. $\Lambda_{b} \rightarrow \Lambda V \rightarrow p 3 \pi$)

1. Angular distribution encodes the helicity amplitudes
2. They induce CPVs with different strong phase dependences

$$
\sin \delta_{s} \mathbf{v s} \cos \delta_{s}
$$

[Geng, Liu, Wei, et al, 2106.10628,2109.09524,2206.00348;Zhou, et al, 2210.15357]

- Strong phase dependence: $\sin \delta_{s} \mathbf{v s} \cos \delta_{s}$

- Whatever the strong phase is, either $|\sin \delta|$ or $|\cos \delta|$ would be larger than 0.7.
- If both of CPVs are measured, the strong phase can be determined.

T-odd correlation induced CP asymmetry

- General conclusion: T-odd correlation $Q_{\text {_ }}$ induces CPV with cosine dependence on strong phases

$$
T Q_{-}=-Q_{-} T, \quad A_{C \bar{P}}^{Q} \equiv \frac{\left\langle Q_{-}\right\rangle-\left\langle\bar{Q}_{-}\right\rangle}{\left\langle Q_{-}\right\rangle+\left\langle\bar{Q}_{-}\right\rangle} \propto \cos \delta_{s}
$$

if it satisfies two conditions: (i) for the final-state basis $\left\{\left|\psi_{n}\right\rangle, \mathrm{n}=1,2, \ldots\right\}$, there is a unitary transformation U, s.t. $U T\left|\psi_{n}\right\rangle=e^{-i \alpha}\left|\psi_{n}\right\rangle$; (2) $U Q_{-} U^{\dagger}=Q_{-}$.
Proof:

$$
\begin{array}{rlrl}
\langle f| Q_{-}|f\rangle & =\langle i| S^{\dagger} Q_{-} S|i\rangle & \left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle & =\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} \mathcal{T} Q_{-}\left|\psi_{n}\right\rangle^{*} \\
& =\sum_{m, n}\left\langle\psi_{i}\right| S^{\dagger}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| S\left|\psi_{i}\right\rangle & & =-\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} Q_{-} \mathcal{T}\left|\psi_{n}\right\rangle^{*} \\
& =\sum_{m, n} A_{m}^{*} A_{n}\left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle . & & =-\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} \mathcal{U}^{\dagger} \mathcal{U} Q_{-} \mathcal{U}^{\dagger} \mathcal{U}\left|\psi_{n}\right\rangle^{*} \\
& & =-\left\langle\psi_{m}\right| \mathcal{T}^{\dagger} \mathcal{U}^{\dagger} Q_{-} \mathcal{U} \mathcal{T}\left|\psi_{n}\right\rangle^{*} \\
& & =-\left\langle\psi_{m}\right| Q_{-}\left|\psi_{n}\right\rangle^{*},
\end{array}
$$

$$
\longrightarrow \quad\langle f| Q_{-}|f\rangle \ni \operatorname{Im}\left(A_{m}^{*} A_{n}\right)
$$

$$
\longrightarrow \quad A_{C P}^{Q} \propto \sin \delta_{w} \cos \delta_{s}
$$

$$
A_{C P}^{Q_{+}} \propto \sin \delta_{w} \sin \delta_{s}
$$

T-odd correlation induced CP asymmetry

- Example 1. Triple product $Q_{1} \equiv\left(\vec{s}_{1} \times \vec{s}_{2}\right) \cdot \hat{p}$ in $P \rightarrow P_{1} P_{2}$

$$
\begin{array}{llll}
T: \vec{p} \rightarrow-\vec{p}, h \rightarrow h ; & U=R(\pi):-\vec{p} \rightarrow \vec{p}, h \rightarrow h & \longrightarrow & \text { condition (i) } \\
T: Q_{1} \rightarrow-Q_{1} ; & U=R(\pi): Q_{1} \rightarrow Q_{1} & \longrightarrow & \text { condition (ii) }
\end{array}
$$

- Example 2. Triple product $Q_{p} \equiv\left(\hat{p}_{1} \times \hat{p}_{2}\right) \cdot \hat{p}_{3}$ in $P \rightarrow P_{1} P_{2} P_{3} P_{4}$

$$
\begin{array}{ll}
T: \vec{p} \rightarrow-\vec{p} ; & U=P:-\vec{p} \rightarrow \vec{p} \\
T: Q_{p} \rightarrow-Q_{p} ; & U=P: Q_{p} \rightarrow-Q_{p}
\end{array}
$$

T-odd correlation induced CP asymmetry

- For the decay $\Lambda_{b} \rightarrow N^{*}(1520) K^{*}$, three such T-odd correlations
Triple product
Hepta product
Penta product $\quad Q_{1} \equiv\left(\vec{s}_{1} \times \vec{s}_{2}\right) \cdot \hat{p}=\frac{i}{2}\left(s_{1}^{+} s_{2}^{-}-s_{1}^{-} s_{2}^{+}\right)$
$Q_{2} \equiv\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right) Q_{1}+Q_{1}\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right)=\frac{i}{2} s_{1}^{Z} s_{2}^{z}\left(s_{1}^{+} s_{2}^{-}-s_{1}^{-} s_{2}^{+}\right)+\frac{i}{2}\left(s_{1}^{+} s_{2}^{-}-s_{1}^{-} s_{2}^{+}\right) s_{1}^{z} s_{2}^{z}$
$Q_{3} \equiv\left(\vec{s}_{1} \cdot \vec{s}_{2}\right) Q_{1}+Q_{1}\left(\vec{s}_{1} \cdot \vec{s}_{2}\right)-Q_{2}=\frac{i}{2}\left(s_{1}^{+} s_{1}^{+} s_{2}^{-} s_{2}^{-}-s_{1}^{-} s_{1}^{-} s_{2}^{+} s_{2}^{+}\right)$
- Their expectations are imaginary helicity amplitude interferences

$$
\left\langle Q_{3}\right\rangle=2 \sqrt{3} \operatorname{Im}\left(H_{+1,+\frac{3}{2}} H_{-1, \frac{1}{2}}^{*}+H_{-1,-\frac{3}{2}}^{*} H_{+1,+\frac{1}{2}}\right) \quad \cos \delta_{S} \mathbf{v s} \sin \delta_{S}
$$

- Moreover, complementary T-even correlations are found

$$
\begin{aligned}
& P_{1} \equiv \vec{s}_{1} \cdot \vec{s}_{2}-\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right), P_{2} \equiv\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right) P_{1}+P_{1}\left(\vec{s}_{1} \cdot \hat{p}\right)\left(\vec{s}_{2} \cdot \hat{p}\right) \\
& P_{3} \equiv P_{1}^{2}-\left[\vec{s}_{1}^{2}-\left(\vec{s}_{1} \cdot \hat{p}\right)^{2}\right]\left[\vec{s}_{2}^{2}-\left(\vec{s}_{2} \cdot \hat{p}\right)^{2}\right]-\left[\left(\vec{s}_{1} \times \vec{s}_{1}\right) \cdot \hat{p}\right]\left[\left(\vec{s}_{2} \times \vec{s}_{2}\right) \cdot \hat{p}\right]
\end{aligned}
$$

Real part Exactly Complementary!

T-odd correlation induced CP asymmetry

- The expectations of the complementary T-odd and T-even correlations are both encoded in angular distribution of secondary decays of $N^{*}(1520) K^{*}$

- Complementary CP asymmetries can thereby be measured, which depend on $\cos \delta_{s} \& \sin \delta_{s}$.

$$
\left.\left.\begin{array}{l}
\frac{d \Gamma}{d c_{1} d c_{2} d \varphi} \propto s_{1}^{2} s_{2}^{2}\left(\left|\mathcal{H}_{+1,+\frac{3}{2}}\right|^{2}+\left|\mathcal{H}_{-1,-\frac{3}{2}}\right|^{2}\right) \\
+\mathrm{s}_{1}^{2}\left(\frac{1}{3}+\mathrm{c}_{2}^{2}\right)\left(\left|\mathcal{H}_{+1,+\frac{1}{2}}\right|^{2}+\left|\mathcal{H}_{-1,-\frac{1}{2}}\right|^{2}\right) \\
+2 \mathrm{c}_{1}^{2}\left(\frac{1}{3}+\mathrm{c}_{2}^{2}\right)\left(\left|\mathcal{H}_{0,-\frac{1}{2}}\right|^{2}+\left|\mathcal{H}_{0,+\frac{1}{2}}\right|^{2}\right) \\
-\frac{s_{1}^{2} \mathrm{~s}^{2}}{\sqrt{3}} \operatorname{Im}\left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*}+\mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*}\right) \sin 2 \varphi \tag{3}\\
+\frac{\mathrm{s}_{1}^{2} \mathrm{~s}_{2}^{2}}{\sqrt{3}} \operatorname{Re}\left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*}+\mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*}\right) \cos 2 \varphi
\end{array}\right\rangle\left\langle Q_{3}\right\rangle\right)
$$

Summary

- Baryonic flavor physics has become more and more important
- Based on the spin/helicity information of baryons, CPV observables can be built with different dependences on strong phases
- We prove that a subset of T-odd and T-even CPVs, are proportional to cos δ_{S} and $\sin \delta_{S}$.
- They can be extracted from angular distributions of Cascade baryon decays.
- It may help discover the baryonic CPV, and afterwards help determine the strong phase and hence the weak phase.

