Tau Physics at Belle II Current Status and Prospects

CEPC味物理-新物理和相关探测技术研讨会

Yubo Li (李郁博) Xi'an Jiaotong University 2023/06/18

B factory is also τ factory

@10.58 GeV: $\sigma(e^+e^- \to \tau^+\tau^-) = 0.92 \ nb$ $\sigma(e^+e^- \to \Upsilon(4S)) = 1.11 \ nb$

Features of a B-Factory (super *τ***-charm Factory):**

- High luminosity.
- Well-defined initial state.
- High vertex resolution.
- Excellent calorimetry.
- Sophisticated particle ID.
- Ability to trigger low-multiplicity event

Also see Nishida-san's talk

How we reconstruct τ at Belle II (in general cases)

- $e^+e^- \rightarrow \tau^+\tau^-$ decays are reconstructed
- Event separated based on *thrust* axis (\hat{n}_{thrust})

$$V_{thrust} = \frac{\Sigma_i |\vec{p}_i^{cm} \cdot \hat{n}_{thrust}|}{\Sigma_i |\vec{p}_i^{cm}|}$$

- \vec{p}_i^{cm} : momenta of detectable tracks
- \hat{n}_{thrust} : values maximize V_{thrust}

Current status of Belle II

Current: peak $\mathcal{L}: 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (world-record) integral $\mathcal{L}: 428 \text{ fb}^{-1}$ Goal: peak $\mathcal{L}: 6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ integral $\mathcal{L}: 50 \text{ ab}^{-1}$

The Belle II's integral luminosity is only half those of Belle/Babar. **But** some results are better!

- Better vertex resolution
- Better trigger efficiency

What Belle II has done:

- τ properties:
 - -- mass: arXiv:2305.19116
 - -- lifetime (Sensitivity study)

Beyond Standard Model --LFV • $\tau^- \rightarrow \ell^- \phi$ arXiv:2305.04759 • $\tau^- \rightarrow \ell^- \alpha$ PRL 130, 181803

Electroweak sector --Lepton Universality $R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \overline{\nu}_e \nu_{\tau})} \text{ (Sensitivity study)}$

PS: Works on Trigger logical, Particle Identification, Photon calibration ... are still ongoing for better performance.

a little background:

input	Uncertainty (%)	Best Measurement				
$\mathcal{B}(\tau^- o \ell^- \overline{v}_\ell v_\tau(\gamma))$	0.180	ALEPH				
$ au_L$	0.172	Belle				
m_L^5	0.007	BES III				

Fig from Alberto Lusiani

Measurement of τ mass

Two main methods for measuring the mass:

- 1: pair production cross section:
 - energy scan around the tau pair production threshold
 - extract the mass from the dependence of cross section on collision energy

2: Pseudomass method:

developed by ARGUS, and used at BaBar, Belle and Belle II

Measurement of τ mass

Pseudomass method:

 $m_{\tau}^2 = (p_h + p_{\nu})^2$

 $= 2 E_h (E_\tau - E_h) + m_h^2 - 2|\vec{p}_h|(E_\tau - E_h)\cos(\vec{p}_h, \vec{p}_\nu)$

The direction of the neutrino is not known, since $\cos(\vec{p}_h, \vec{p}_v) \leq 1$

arXiv:2305.19116

Pseudomass:	12	2. E _h	(<i>E</i> _τ	— .	E _h)	+	m_{h}^{2} –	- 2	$\vec{p}_h ($	E_{τ} —	<i>E_h</i>)	\leq	$m_{ au}$

Belle (414 fb⁻¹) arXiv:hep-ex/0608046

TABLE I: Summary of systematic	uncertainties
Source of systematics	σ , MeV/ c^2
Beam energy and tracking system	0.26
Edge parameterization	0.18
Limited MC statistics	0.14
Fit range	0.04
Momentum resolution	0.02
Model of $\tau \to 3\pi\nu_{\tau}$	0.02
Background	0.01
Total	0.35
stat:	0.13 MeV

Source Belle II (190 fb ⁻¹)	$\frac{\text{Uncertainty}}{[\text{MeV}/c^2]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Total	0.11

half data size as Belle and BaBar, BUT better statistical precision!

Even better than our estimation when using 8.75 fb¹ data!

Sensitivity study of τ lifetime

Belle's result:

 $au_{ au} = 290.17 \pm 0.53(stat) \pm 0.33(syst)$ fs Based on 711 fb⁻¹ data, using 3x3 topology

New method at Belle II:

- **1.** One $\tau \rightarrow 3\pi\nu$, another $\tau \rightarrow \rho\nu$.
- 2. Estimate the τ momentum \vec{p}_{τ}
- 3. Find the production vertex. Intersection of \vec{p}_{τ} with the plane IPy.

Sensitivity study of τ lifetime

proper decay time: $t = \ell_{\tau} \frac{m_{\tau}}{|\vec{p_{\tau}}|c}$

Proper decay time resolution:

In MC simulations, the Belle II proper time resolution is $\sim 2x$ better than Belle. -- Due to PXD and smaller beam pipe diameter.

Input $\tau_{\tau} = 290.57 \text{ fs}$ Output $\tau_{\tau} = 287.2 \pm 0.5 \text{ (stat) fs}$ **3** fs bias Same statistical uncertainty of Belle. (200 fb⁻¹ vs 711 fb⁻¹) Next step:

- Revisiting the 3x3 topology
- Consider the ISR/FSR effect

Lepton Flavor Universality Violation

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{BF\left[\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau}\right]}{BF\left[\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau}\right]}} \frac{f\left(m_{e}^{2}/m_{\tau}^{2}\right)}{f\left(m_{\mu}^{2}/m_{\tau}^{2}\right)}$$

In the SM:
$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = 1$$

	μ		
\mathbf{N}^{D}	731102		
Purity	97.3%		
Total Efficiency	0.485%		
Particle ID Efficiency	74.5%		
Systematic uncertainties:			
Particle ID	0.32		
Detector response	0.08		
Backgrounds	0.08		
Trigger	0.10		
$\pi^-\pi^-\pi^+$ modelling	0.01		
Radiation	0.04		
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_\tau)$	0.05		
$\mathcal{L}\sigma_{e^+e^- \to \tau^+ \tau^-}$	0.02		
Total [%]	0.36		

Base measurement form Babar: 467 fb⁻¹, PRL.105.051602

Need to improve systematic uncertainty uncertainties due to PID and trigger >Belle II can do it!

Lepton Flavor Universality Violation

tests with 3x1 topology: same method as Babar

Cut-based performance

- Matches BaBar stat. uncertainty with 100 fb⁻¹ of data.
 - Achieved with asymmetric p_t thresholds on lead, sublead and third track on tag side.
 - **x4 higher efficiency** with better purity:

BDT performance

- Training of a XGBoost classifier for combined signal (*e* or μ in final state).
- 1.7x improvement in efficiency w.r.t. cut-based selection
 (x7 than BaBar),
 with a purity of 98%.

New results coming soon! (Maybe in ESP2023 meeting)

Charged Lepton Flavor Violation

•highly suppressed in SM ($\sim 10^{-50}$) arXiv:2305.04759 •leptoquark models predict BF of up to $10^{-8} \sim 10^{-10}$

Poisson counting experiment approach in signal regions in $M_{\tau} \, \text{and} \, \Delta E_{\tau} = E^*_{_{sig}} - \sqrt{s}/2$ plane

 \rightarrow expected background evaluated from data reduced sidebands with scaling from simulation

not yet competitive with Belle/BaBar... (only 190 fb-1 data samples are used) But a successful first application of inclusive tagging at Belle II

Charged Lepton Flavor Violation

Most stringent limits in these channels to date! (2-14 times more constraining than Argus)

Summary

Belle II has advantages in τ decays studies

- ✤ Has collected 424 fb-1 data samples
- Lots of works on the way!

 τ properties:

- -- mass: <u>arXiv:2305.19116</u>
- -- lifetime
- -- CKM (V_{us}): $\tau^- \rightarrow K^-(\dots)\nu$

Electroweak sector

--Lepton Universality

Beyond Standard Model --LFV • $\tau^- \rightarrow \ell^- \phi$ arXiv:2305.04759 • $\tau^- \rightarrow \ell^- \alpha$ PRL 130, 181803 • $\tau \rightarrow 3\ell, \ell \gamma, \ell \rho, \ell^- K_s^0, \Lambda \pi$ -- CP Violation $\tau \rightarrow K_s^0 \pi \nu, 3h\nu$ -- CP/T: EDM and MDM

In a nutshell

Open-source sophisticated algorithms for simulation, reconstruction, visualization, and analysis.

Software:

Comput. Softw. Big Sci. 3 1 (2019)

Tau mass systematics: momentum scale

• Momentum of the
$$3\pi$$
's is an important ingredient in the $M_{min}!$

- We use $D^0 \rightarrow K\pi$ as a standard candle!
 - get scale factors (SF) for K and π based on difference in peak position and PDG value of D⁰
 - phase-space dependent SFs: as a function of charge and cos(θ) of the tracks
 - various systematic effects included for the SF's:
 - m(D⁰) PDG uncertainty
 - peak position modelling
 - additional kinematical dependence
 - detector misalignment
- Use other mass peaks as cross check: $D^0 \rightarrow K\pi\pi\pi$, $J/\psi \rightarrow \mu\mu$, $K_s^0 \rightarrow \pi\pi$, $D^{\pm} \rightarrow K\pi\pi^{\dagger}$

$$M_{\rm min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)}$$

⇒ impact on tau mass: **0.06 MeV** 19

Tau mass systematics: energy scale

- Center-of-mass collision energy (\sqrt{s}):
 - used to approximate the energy of the tau
- Use energy of fully reconstructed B mesons (E*_B) to calibrate \sqrt{s}
 - E_{B}^{*} only approximately equals \sqrt{s} , need extra corrections due to subtle effects from:
 - ISR photons
 - spread of the beam energy
 - dependence of Y(4S) cross section on the beam energy:

e.g when \sqrt{s} is below the Y(4S) peak, due to the beam-energy spread, we produce:

- less low energy B mesons
- more high energy B's

⇒ resulting in a bias in E^*_{B} values towards the Υ (4S) peak

$$M_{\rm min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)}$$

• The method:

• Use an empirical fit function to extract the mass:

$$F(M_{\min}) = 1 - P_3 \cdot \arctan\left(\frac{M_{\min} - P_1}{P_2}\right) + P_4(M_{\min} - P_1) + P_5(M_{\min} - P_1)^2$$

- P_1 : depends on the position of threshold
- P_2 : the slope of the threshold
- $P_3 P_5$: the shape away the threshold

• P₁ is an estimator of tau mass!

- This is a biased estimator of 0.40 MeV, determined from simulation samples, with various generated tau masses
- **~3x smaller bias** compare to Belle and BaBar (they had slightly different parameterizations)
- The bias can also depend on the overall shape of the distribution as well

